At the scale in which we live, space is continuous. Nevertheless, our perception and cognition parse the world into categories, whether physical, like or or abstract, like or 7. The present study focuses on 2 categories of special angles in planar geometry, and and we evaluate how these categories might be reflected in adults' basic angle discrimination. In the first experiment, participants were most precise when detecting 2 parallel or perpendicular lines among other pairs of lines at different relative orientations. Detection was also enhanced for 2 connected lines whose angle approached 90°, with precision peaking at 90°. These patterns emerged despite large variations in the scales and orientations of the angle exemplars. In the second experiment, the enhanced detection of perpendiculars persisted when stimuli were rotated in depth, indicating a capacity to discriminate shapes based on perpendicularity in 3 dimensions despite large variation in angles' 2-dimensional projections. The results suggest that 2 categorical concepts which lie at the foundation of Euclidean geometry, parallelism and perpendicularity, are reflected in our discrimination of simple visual forms, and they pave the way for future studies exploring the developmental and evolutionary origins of these cognitive categories. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/xhp0000663DOI Listing

Publication Analysis

Top Keywords

despite large
8
geometric categories
4
categories cognition
4
cognition scale
4
scale live
4
live space
4
space continuous
4
continuous perception
4
perception cognition
4
cognition parse
4

Similar Publications

Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system.

Rev Endocr Metab Disord

January 2025

Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.

Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.

View Article and Find Full Text PDF

Acetylation modification in the regulation of macroautophagy.

Adv Biotechnol (Singap)

June 2024

Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.

Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs).

View Article and Find Full Text PDF

Repetitive elements are the main components of many plant genomes and play a crucial role in the variation of genome size and structure, ultimately impacting species diversification and adaptation. Alstroemeriaceae exhibits species with large genomes, not attributed to polyploidy. In this study, we analysed the repetitive fraction of the genome of Bomarea edulis through low-coverage sequencing and in silico characterization, and compared it to the repeats of Alstroemeria longistaminea, a species from a sister genus that has been previously characterized.

View Article and Find Full Text PDF

The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, -terminal truncation at Phe4, yielding Aβ, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ remains unexplored.

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin type 9 (PCSK9) discovery has added a new paradigm to our understanding of cholesterol homeostasis and lipid metabolism. Since its discovery, PCSK9 inhibitors have become a widely investigated therapeutic class for lipid management in cardiovascular diseases and hypercholesterolemia. Scientists have explored different approaches for PCSK9 inhibition, such as monoclonal antibodies (mAbs), gene silencing and gene editing techniques, vaccines, mimetic peptides, and small molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!