AI Article Synopsis

  • - A study was conducted on 75 clinical isolates of Acinetobacter baumannii from five centers in India to analyze the presence of β-lactamase genes and to compare strains with international clones.
  • - The research confirmed that all isolates had certain genes associated with antibiotic resistance, notably Class D and B carbapenemases, with ST-848 being a prominent sequence type indicating a new lineage of concern in spreading resistance.
  • - Findings revealed that most isolates clustered into clonal complex 208, linked to an international lineage, highlighting a potential public health issue with increasing carbapenem resistance in the region.

Article Abstract

Background & Objectives: Acinetobacter baumannii is an opportunistic pathogen responsible for causing nosocomial infections. A. baumannii develops resistance to various antimicrobial agents including carbapenems, thereby complicating the treatment. This study was performed to characterize the isolates for the presence of various β-lactamases encoding genes and to type the isolates to compare our clones with the existing international clones across five centres in India.

Methods: A total 75 non-repetitive clinical isolates of A. baumannii from five different centres were included in this study. All the isolates were confirmed as A. baumannii by bl aPCR. Multiplex PCR was performed to identify the presence of extended spectrum β-lactamases (ESBL) and carbapenemases. Multilocus sequence typing was performed to find the sequence type (ST) of the isolates. e-BURST analysis was done to assign each ST into respective clonal complex.

Results: blawas present in all the 75 isolates. The predominant Class D carbapenemase was blafollowed by Class B carbapenemase, bla. Class A carbapenemase was not observed. blawas the predominant extended spectrum β-lactamase. ST-848, ST-451 and ST-195 were the most common STs. Eight-novel STs were identified. e-BURST analysis showed that the 75 A. baumannii isolates were clustered into seven clonal complexes and four singletons, of which, clonal complex 208 was the largest.

Interpretation & Conclusions: Most of the isolates were grouped under clonal complex 208 which belongs to the international clonal lineage 2. High occurrence of ST-848 carrying blagene suggested that ST-848 could be an emerging lineage spreading carbapenem resistance in India.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563728PMC
http://dx.doi.org/10.4103/ijmr.IJMR_2085_17DOI Listing

Publication Analysis

Top Keywords

class carbapenemase
12
isolates
8
type isolates
8
extended spectrum
8
e-burst analysis
8
clonal complex
8
complex 208
8
baumannii
5
clonal
5
molecular characterization
4

Similar Publications

Novel allelic variants of bla carried on IncN and IncC plasmids isolated from clinical cases in Argentina. In vivo emergence of bla.

J Glob Antimicrob Resist

December 2024

Servicio Antimicrobianos, INEI-ANLIS ''Dr. Carlos G. Malbrán''. National and Regional Reference Laboratory for Antimicrobial Resistance (NRRLAR). Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Electronic address:

Background: The OXA-48-like enzymes are members of the class D β-lactamases, primarily detected in Enterobacterales, with the capacity to hydrolyze carbapenems. The allelic variant bla, which has low hydrolytic activity towards carbapenemes, was detected in Argentina in 2011 and spread successfully since then, giving sporadic origin to novel local variants.

Aim: To study the phenotypic profile and the dissemination strategies of two novel OXA enzymes, bla and bla, harbored in Escherichia coli M17224 and Klebsiella pneumoniae M21014, isolated from two pediatric patients.

View Article and Find Full Text PDF

NDM-5-plasmid diversity in multiple international high-risk Escherichia coli clones associated with canine and feline extraintestinal infections.

Vet Microbiol

December 2024

Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland. Electronic address:

NDM-5-producing Escherichia coli are the predominant carbapenemase producers of medical and public health importance. The global spread of bla-containing plasmids in high-risk E. coli clones has been primarily documented in humans and increasingly reported in animals and the environment.

View Article and Find Full Text PDF

Integrons are key players in the spread of beta-lactamase-encoding genes.

Int J Antimicrob Agents

December 2024

Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.

Integrons mediate the acquisition and expression of gene cassettes (GCs). The production of beta-lactamases (BLs) is the most relevant mechanism of beta-lactams resistance. To explore the role of integrons in BL genes dissemination, we retrieved sequences and metadata from the INTEGRALL database and performed literature review.

View Article and Find Full Text PDF

In-vitro activity of the novel β-lactam/β-lactamase inhibitor combinations and cefiderocol against carbapenem-resistant Pseudomonas spp. clinical isolates collected in Switzerland in 2022.

Eur J Clin Microbiol Infect Dis

December 2024

Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland.

To evaluate the in-vitro activity of the novel commercially-available drugs, including meropenem-vaborbactam (MEV), ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), imipenem-relebactam (IPR) as well as cefiderocol (FDC), against carbapenem-resistant Pseudomonas spp. (CRP) isolates. All CRP isolates collected at the Swiss National Reference Laboratory (NARA) over the year 2022 (n = 170) have been included.

View Article and Find Full Text PDF

Objective: The emergence of multidrug-resistant (MDR) Escherichia coli strains has significantly constrained antibiotic treatment options, while the spread of antimicrobial resistance genes (ARGs) and mobile genetic elements exacerbates the situation. This study delves into an MDR E. coli strain, QMM-01, which uniquely co-expresses β-lactamases from all four recognized classes, aiming to uncover the underlying mechanisms of its resistance and assess its potential for global spread.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!