Introduction: L-glutamine is an antioxidant that plays a role in a variety of biochemical processes. Given that oxidative stress is a key component of stroke pathology, the potential of L-glutamine in the treatment of ischemic stroke is worth exploring.
Aims: In this study, we investigated the effect and mechanisms of action of L-glutamine after cerebral ischemic injury.
Results: L-glutamine reduced brain infarct volume and promoted neurobehavioral recovery in mice. L-glutamine administration increased the expression of heat-shock protein 70 (HSP70) in astrocytes and endothelial cells. Such effects were abolished by the coadministration of Apoptozole, an inhibitor of the ATPase activity of HSP70. L-glutamine also reduced oxidative stress and neuronal apoptosis, and increased the level of superoxide dismutase, glutathione, and brain-derived neurotrophic factor. Cotreatment with Apoptozole abolished these effects. Cell culture study further revealed that the conditioned medium from astrocytes cultured with L-glutamine reduced the apoptosis of neurons after oxygen-glucose deprivation.
Conclusion: L-glutamine attenuated ischemic brain injury and promoted functional recovery via HSP70, suggesting its potential in ischemic stroke therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698979 | PMC |
http://dx.doi.org/10.1111/cns.13184 | DOI Listing |
Int J Mol Sci
December 2024
Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.
Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
Legumes are well-known for symbiotic nitrogen fixation, whereas associative nitrogen fixation for nonlegume plants needs more attention. Most associative nitrogen-fixing bacteria are applied in their original plant species and need further study for broad adaptation. Additionally, if isolated nitrogen-fixing bacteria could function under fertilizer conditions, it is often ignored.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).
View Article and Find Full Text PDFDis Esophagus
January 2025
Department of Surgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
Background: The wound healing effects of a specialized amino acid supplement containing calcium beta-hydroxy-beta-methylbutyrate, L-arginine, and L-glutamine (HMB/Arg/Gln) have been reported. This study aimed to investigate the effectiveness of HMB/Arg/Gln in the perioperative management of patients with thoracic esophageal cancer.
Methods: This retrospective cohort study included 131 patients who underwent esophagectomy for thoracic esophageal cancer between January 2016 and November 2023.
Front Plant Sci
December 2024
School of Hydraulic Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China.
Water-saving irrigation and the mixed application of controlled-release nitrogen fertilizer (CRNF) and common urea (CU; with a higher nitrogen release rate) have shown promise in improving rice yield with high resource use efficiency. However, the physiological mechanism underlying this effect remains largely unknown. This study involved a field experiment on rice in Jingzhou City, Central China, in 2020 and 2021.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!