Protective anti-inflammatory activity of tovophyllin A against acute lung injury and its potential cytotoxicity to epithelial lung and breast carcinomas.

Inflammopharmacology

Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, University Street, Al Madinah Al-Munawwarah, 30078, Saudi Arabia.

Published: February 2020

Tovophyllin A (TA) is a xanthone isolated from Garcinia mangostana L. (GM, Guttiferae) pericarps that possesses various beneficial bioactivities. However, its protective effects on acute lung injury (ALI) and lung carcinoma have not yet been explored. The current work was designed to investigate the protective potential of TA against ALI and explore the possible mechanism of action. Two different doses of TA were tested against lipopolysaccharide (LPS)-induced ALI in mice. Moreover, the cytotoxic potential of TA was assessed in epithelial lung (A549 cells) and breast (MCF7 cells) carcinomas utilizing a sulforhodamine B (SRB) assay. The results revealed that TA possessed the ability to protect against LPS-induced acute lung damage. TA attenuated LPS-induced pulmonary edema, as it lowered the protein content in the bronchoalveolar lavage fluid (BALF) and the lung W/D ratio. In addition, TA counteracted inflammatory cell infiltration into the lung tissue, as shown by the total and differential cell counts in the BALF and histopathological examination of the lungs. The oxidative burden in the pulmonary tissue was ameliorated in TA-treated animals as there were reductions in the malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels in the lung tissue. TA increased the levels of antioxidants such as reduced glutathione (GSH) and superoxide dismutase (SOD) in the lungs. Furthermore, TA inhibited the activation of nuclear factor-κB (NF-κB). In addition, TA had potent anti-inflammatory activity as it reduced the immunoexpression and levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6. Furthermore, TA showed significantly enhanced cytotoxic activity against the MCF-7 and A549 cell lines with ICs of 6.1 and 2.2 µM, respectively, compared to doxorubicin (ICs of 0.41 and 0.74 µM, respectively). In conclusion, TA ameliorates LPS-induced ALI through the suppression of oxidative stress and inflammation. These findings suggest the potential use of this compound as a future treatment for ALI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10787-019-00609-1DOI Listing

Publication Analysis

Top Keywords

acute lung
12
lung
9
anti-inflammatory activity
8
lung injury
8
epithelial lung
8
lps-induced ali
8
lung tissue
8
ali
5
protective anti-inflammatory
4
activity tovophyllin
4

Similar Publications

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

The immune mechanisms of acute exacerbations of idiopathic pulmonary fibrosis.

Front Immunol

December 2024

Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) are the leading cause of mortality among patients with IPF. There is still a lack of effective treatments for AE-IPF, resulting in a hospitalization mortality rate as high as 70%-80%. To reveal the complicated mechanism of AE-IPF, more attention has been paid to its disturbed immune environment, as patients with IPF exhibit deficiencies in pathogen defense due to local immune dysregulation.

View Article and Find Full Text PDF

Molecular identification of species from pneumonic goats, Iraq.

Open Vet J

November 2024

Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Wasit, Iraq.

Background: In goats, acute and chronic respiratory infections are often characterized by a rapidly progressing clinical course with little opportunity to develop an effective antibiotic therapy.

Aim: This study aimed to identify spp. in pneumonic goats, assess its antibiotic susceptibility, and confirm the molecular phylogenetics of spp.

View Article and Find Full Text PDF

Objective: To identify risk factors for clinically-important drowning-associated lung injury (ciDALI) in children.

Study Design: This was a cross-sectional study of children (0 through18 years) who presented to 32 pediatric emergency departments (EDs) from 2010 through 2017. We reviewed demographics, comorbidities, prehospital data, chest radiographs reports, and ED course from emergency medical services, medical, and fatality records.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!