A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corticomotor excitability reduction induced by experimental pain remains unaffected by performing a working memory task as compared to staying at rest. | LitMetric

Corticomotor excitability reduction induced by experimental pain remains unaffected by performing a working memory task as compared to staying at rest.

Exp Brain Res

Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Fredrik Bajers Vej 7 D3, 9220, Aalborg, Denmark.

Published: September 2019

Experimental pain inhibits primary motor cortex (M1) excitability. Attenuating pain-related inhibition of M1 excitability may be useful during rehabilitation in individuals with pain. One strategy to attenuate M1 excitability is to influence prefrontal and premotor cortex activity. Working memory tasks, e.g. the two-back task (TBT), engage prefrontal and premotor cortices and may influence M1 excitability. We hypothesized that performing the TBT during pain would influence pain-related changes in M1 excitability. Participants (n = 28) received rigorous training in the TBT before baseline testing. Experimental pain was induced by injecting hypertonic saline into the first dorsal interosseous (FDI) muscle. Participants rated pain intensity on a 0-10 numerical rating scale (NRS) every second min until pain-resolved (PR) during the performance of the TBT (n = 14) or during REST (n = 14). In the TBT, letters were presented pseudo-randomly, and accuracy and reaction time to identified letters corresponding to letters shown two times back were recorded. M1 excitability was assessed using transcranial magnetic stimulation. Motor-evoked potentials (MEPs) were recorded at baseline, and at PR, PR + 10, PR + 20, and PR + 30 min. Four minutes after hypertonic saline injection, the pain NRS scores were higher in the TBT group than the REST group (p = 0.009). No time × group interaction was found for MEPs (p = 0.73), but a main effect of time (p < 0.0005) revealed a reduction of MEPs at PR up until PR + 30 (p < 0.008). The TBT accuracy improved at PR + 30 in both groups (p = 0.019). In conclusion, the pain-induced reduction in corticomotor excitability was unaffected by performing a working memory task, despite greater pain in the TBT group.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-019-05587-yDOI Listing

Publication Analysis

Top Keywords

experimental pain
12
working memory
8
prefrontal premotor
8
hypertonic saline
8
pain
7
excitability
6
tbt
6
corticomotor excitability
4
excitability reduction
4
reduction induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!