A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@agnps&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. | LitMetric

Magnetic cores loaded with metallic nanoparticles can be promising nano-carriers for successful drug delivery at infectious sites. We report fabrication, characteristic analysis and antibacterial performance of nanocomposites comprising cobalt cores (Co-cores) functionalized with a varied concentration of silver nanoparticles (AgNPs). A two-step polyol process synchronized with the transmetalation reduction method was used. Co-cores were synthesized with cobalt acetate, and decoration of AgNPs was carried out with silver acetate. The density of AgNPs was varied by changing the amount of silver content as 0.01, 0.1 and 0.2 g in the synthesis solution. Both AgNPs and Co-cores were spherical having a size range of 30-80 nm and 200 nm to more than 1 µm, respectively, as determined by scanning electron microscopy. The metallic nature and face-centred cubic crystalline phase of prepared nanocomposites were confirmed by X-ray diffraction. Biocompatibility analysis confirmed high cell viability of MCF7 at low concentrations of tested particles. The antibacterial performance of nanocomposites (Co@AgNPs) against and was found to be AgNPs density-dependent, and nanocomposites with the highest AgNPs density exhibited the maximum bactericidal efficacy. We therefore propose that Co@AgNPs as effective drug containers for various biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549958PMC
http://dx.doi.org/10.1098/rsos.182135DOI Listing

Publication Analysis

Top Keywords

nanocomposites co@agnps
8
antibacterial performance
8
performance nanocomposites
8
agnps
6
nanocomposites
5
synthesis characterization
4
silver
4
characterization silver
4
silver nanoparticle-decorated
4
nanoparticle-decorated cobalt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!