Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS monolayer precisely determines the output circular polarization state of the generated second-harmonic vortex. These results pave the way for building future miniaturized valleytronic devices with atomic-scale thickness for many applications such as chiral photon emission, nonlinear beam generation, optoelectronics, and quantum computing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584687 | PMC |
http://dx.doi.org/10.1038/s41598-019-45424-4 | DOI Listing |
Nature
January 2025
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
A particle current generated by pumping in the absence of gradients in potential energy, density or temperature is associated with non-trivial dynamics. A representative example is charge pumping that is associated with the quantum Hall effect and the quantum anomalous Hall effect. Spin pumping, the spin equivalent of charge pumping, refers to the emission of a spin current by magnetization dynamics.
View Article and Find Full Text PDFNano Lett
January 2025
Institut de Ciència de Materials de Barcelona, Campus de la UAB, Bellaterra 08193, Spain.
Current-induced torques originating from earth-abundant 3d elements offer a promising avenue for low-cost and sustainable spintronic memory and logic applications. Recently, orbital currents─transverse orbital angular momentum flow in response to an electric field─have been in the spotlight since they allow current-induced torque generation from 3d transition metals. Here, we report a comprehensive study of the current-induced spin and orbital torques in Cu-based magnetic heterostructures.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Sun Yat-sen University, School of Physics and Astronomy, Zhuhai 519082, China.
Vortex states of photons, electrons, and other particles are freely propagating wave packets with helicoidal wave fronts winding around the axis of a phase vortex. A particle prepared in a vortex state carries a nonzero orbital angular momentum projection on the propagation direction, a quantum number that has never been exploited in experimental particle and nuclear physics. Low-energy vortex photons, electrons, neutrons, and helium atoms have been demonstrated in experiment and found numerous applications, and there exist proposals of boosting them to higher energies.
View Article and Find Full Text PDFOrbital angular momentum (OAM), with its unique orthogonality, is widely applied in optical holographic encryption and information storage. Theoretically, the topological charge of OAM holography is infinite. However, in practice, it is restricted by the Nyquist-Shannon sampling theorem and experimental equipment, resulting in a relatively small number of practically usable channels.
View Article and Find Full Text PDFDue to mode coupling, a high signal-to-noise ratio (SNR) is required in orbital angular momentum (OAM) modular division multiplexing (MDM) systems to improve transmission performance. In this paper, a cascade delta-sigma modulation (CDSM) scheme is proposed for OAM-MDM intensity modulation and direct detection (IM/DD) transmission. Different from the traditional DSM (TDSM) scheme, the scheme is divided into signal modulation and in-band noise modulation, in which the in-band noise modulation is used to further decrease the quantization noise generated in the signal modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!