Atrial dysfunction is highly prevalent and associated with increased severity of heart failure. While rapid excitation-contraction coupling depends on axial junctions in atrial myocytes, the molecular basis of atrial loss of function remains unclear. We identified approximately 5-fold lower junctophilin-2 levels in atrial compared with ventricular tissue in mouse and human hearts. In atrial myocytes, this resulted in subcellular expression of large junctophilin-2 clusters at axial junctions, together with highly phosphorylated ryanodine receptor (RyR2) channels. To investigate the contribution of junctophilin-2 to atrial pathology in adult hearts, we developed a cardiomyocyte-selective junctophilin-2-knockdown model with 0 mortality. Junctophilin-2 knockdown in mice disrupted atrial RyR2 clustering and contractility without hypertrophy or interstitial fibrosis. In contrast, aortic pressure overload resulted in left atrial hypertrophy with decreased junctophilin-2 and RyR2 expression, disrupted axial junctions, and atrial fibrosis. Whereas pressure overload accrued atrial dysfunction and heart failure with 40% mortality, additional junctophilin-2 knockdown greatly exacerbated atrial dysfunction with 100% mortality. Strikingly, transgenic junctophilin-2 overexpression restored atrial contractility and survival through de novo biogenesis of polyadic junctional membrane complexes maintained after pressure overload. Our data show a central role of junctophilin-2 cluster disruption in atrial hypertrophy and identify transgenic augmentation of junctophilin-2 as a disease-mitigating rationale to improve atrial dysfunction and prevent heart failure deterioration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629097 | PMC |
http://dx.doi.org/10.1172/jci.insight.127116 | DOI Listing |
J Cardiothorac Surg
January 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Clinical Medical Research Center for Heart and Macrovascular Disease, Fuzhou, 350001, China.
Objective: The objective of this study is to assess the predictive utility of perioperative P-wave parameters in patients with paroxysmal atrial fibrillation (PAF) undergoing catheter ablation, and to develop a predictive model using these parameters.
Methods: A total of 213 patients with PAF undergoing catheter ablation were retrospectively analyzed. P-wave parameters were measured within 3 days preoperatively and on the day postoperatively to determine their predictive significance for postoperative PAF recurrence.
Heart Fail Rev
January 2025
Department of Cardiology, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy.
Left atrial (LA) hypertension is central in the pathophysiology of heart failure (HF) in general and of HF with preserved ejection fraction (HFpEF) in particular. Despite approved treatments, a number of HF patients continue experiencing disabling symptoms due to LA hypertension, causing pulmonary congestion, pulmonary hypertension, and right heart dysfunction, at rest and/or during exercise. LA decompression therapies, i.
View Article and Find Full Text PDFHeart Rhythm
January 2025
Division of Cardiology, University of Ottawa Heart Institute, Canada. Electronic address:
Background: The assessment of left ventricular (LV) systolic function and quantification of LV ejection fraction (EF) in patients with atrial fibrillation (AF) can be difficult. We previously demonstrated that LV volume changes over the 100 ms of systole (LVEF) can be used as a measure of LV systolic function.
Objective: We sought to evaluate the applicability of LVEF in AF patients.
Sci Rep
January 2025
School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, People's Republic of China.
Atrial fibrillation (AF) is a common arrhythmia disease with a higher incidence rate. The diagnosis of AF is time-consuming. Although many ECG classification models have been proposed to assist in AF detection, they are prone to misclassifying indistinguishable noise signals, and the context information of long-term signals is also ignored, which impacts the performance of AF detection.
View Article and Find Full Text PDFIntroduction: Heart failure (HF) poses a substantial burden on healthcare systems and society, necessitating effective diagnostic tools for enhanced patient management. The soluble suppression of tumorigenesis 2 protein (Soluble Suppression of Tumorigenesis 2 (sST2)) has emerged as a promising biomarker linked to cardiac remodeling and fibrosis. This study investigates Soluble Suppression of Tumorigenesis 2 (sST2)'s potential as a diagnostic and prognostic marker for chronic heart failure (CHF) and explores its clinical utility in predicting outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!