In this paper, a novel multi-focus image fusion algorithm based on conditional random field optimization (mf-CRF) is proposed. It is based on an unary term that includes the combined activity estimation of both high and low frequencies of the input images, while a spatially varying smoothness term is introduced, in order to align the graph-cut solution with boundaries of focused and defocused pixels. The proposed model retains the advantages of both spatial-domain methods and multi-spectral methods and by solving an energy minimization problem and finds an optimal solution for the multi-focus image fusion problem. Experimental results demonstrate the effectiveness of the proposed method that outperforms current state-of-the-art multi-focus image fusion algorithms in both qualitative and quantitative comparisons. In this paper, the successful application of the mf-CRF model in multi-modal image fusion (visible-infrared and medical) is also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2019.2922097DOI Listing

Publication Analysis

Top Keywords

image fusion
20
multi-focus image
16
conditional random
8
random field
8
image
5
fusion
5
field model
4
model robust
4
multi-focus
4
robust multi-focus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!