Menopause is an important physiological event associated with structural and functional changes in the kidneys. An animal model of bilateral ovariectomy was used to study the effects of estrogen depletion, replacement and antiestrogen on renal structure and endocrine function. Sixty female rats were divided into six groups; group I was the control group, the remaining five groups underwent ovariectomy: group II received no treatment. The other groups received estradiol in group III, tamoxifen in group IV, estradiol followed by tamoxifen in group V and tamoxifen followed by estradiol in group VI. Serum creatinine, blood urea nitrogen, and endocrine functions of kidney were measured. Tissue samples were examined both microscopically for beta estrogen receptors and ultrastructurally for cell changes. Groups II, IV & VI showed a significant increase in creatinine, blood urea nitrogen, renal malondialdehyde, renal erythropoietin, plasma renin and plasma prostaglandin E2 and a significant decrease in renal antioxidants and serum vitamin D3. Groups III &V had a significant decrease in creatinine, blood urea nitrogen, renal malondialdehyde and renal erythropoietin with an increase in renal antioxidants, plasma prostaglandin E2 and serum vitamin D3. Histopathological and ultrastructural examinations revealed atrophic tubular changes in group II. The changes were less marked in groups III &V and more extensive in groups IV & VI. Estrogen receptor beta staining showed progressively increased expression in the absence of estrogen. Structural and most endocrine functions of the kidney were significantly affected by estradiol deficiency. Estradiol replacement exhibited a protective effect on renal tissue and endocrine functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586115 | PMC |
http://dx.doi.org/10.1080/0886022X.2019.1625787 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!