Backround: Although central nervous system (CNS) tumors are not the most common cancers, their incidence rate is constantly growing. Unfortunately, this group of cancers is characterized by a very poor prognosis with a very short average patient survival. Appropriate therapy depends on early and accurate diagnosis. However, this is often limited by brain tumor localization and heterogeneity. Therefore, new diagnostic approaches and biomarkers that are robust, sensitive, specific, and also without need of invasive biopsy, are still being sought. Cerebrospinal fluid (CSF) comes into direct contact with the CNS and becomes a suitable source of biological material that could reflect actual state of CNS. Suitable molecules in this regard appear to be microRNAs (miRNAs), short non-coding RNAs, that have been already detected in CSF and whose dysregulated levels are associated with various types of brain tumors. Purpose: Unfortunately, the methodical approaches used for CSF miRNA analysis have not been sufficiently standardized yet. For this reason, we summarize and evaluate methodical approaches which were previously used for miRNA analysis from CSF in order to find the most appropriate ones. Subsequently, we review studies focused on miRNA with potential to become biomarkers of CNS tumors in the future. Supported by Ministry of Health of the Czech Republic, grants No. 15-34553A and 15-33158A. All rights reserved. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 3. 1. 2019 Accepted: 3. 1. 2019.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14735/amko2019181 | DOI Listing |
BMC Neurol
January 2025
Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.
Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
Purpose: The escalating number of endoscopic skull base procedures necessitates exploring additional materials to reduce postoperative cerebrospinal fluid (CSF) leaks in revision or staged surgeries. This study evaluates the effectiveness of reused nasoseptal flaps (NSFs) in such clinical scenarios.
Methods: A retrospective review was conducted on patients who previously underwent surgery involving NSFs and later had revision or secondary skull base surgeries via endoscopic endonasal approaches (EEAs) at a tertiary medical center.
J Prev Alzheimers Dis
February 2025
Neurology, Fondazione IRCCS "San Gerardo dei Tintori", Monza, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy; Laboratory of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. Electronic address:
Background: The new criteria for Alzheimer's disease pave the way for the introduction of core blood biomarkers of Alzheimer's disease (BBAD) into clinical practice. However, this depends on the demonstration of sufficient accuracy and robustness of BBADs in the intended population.
Objectives: To assess the diagnostic performance of core BBADs in our memory clinic, comparing them with cerebrospinal fluid (CSF) analysis.
J Prev Alzheimers Dis
February 2025
The ADNI is detailed in Supplemental Acknowledgments.
Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.
Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.
J Psychiatr Res
January 2025
Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!