In this work, thermally healable graphene-nanoplate/epoxy (GNP/EP) nanocomposites were investigated. GNPs were used as reinforcement and crosslinking platforms for the diglycidyl ether of bisphenol A-based epoxy resin (DGEBA) through the Diels-Alder (DA) reaction with furfurylamine (FA). The GNPs and FA could then be used as a derivative of diene and dienophile in the DA reaction. It was expected that the combination of GNPs and FA in DGEBA would produce composites based on the interfacial properties of the components. We confirmed the DA reaction of GNPs and FA at the interface during curing of the GNP/EP nanocomposites. This procedure is simple and solvent-free. DA and retro DA reactions of the obtained composites were demonstrated, and the thermal healing properties were evaluated. The behavior of the GNP/EP nanocomposites in the DA reaction is similar to that of thermosetting polymers at low temperatures due to crosslinking by the DA reaction, and the nanocomposites can be recycled by a retro DA reaction at high temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630711 | PMC |
http://dx.doi.org/10.3390/polym11061057 | DOI Listing |
Polymers (Basel)
June 2019
Division of Semiconductor and Chemical Engineering, Chonbuk National University, Baekjedaero 567, Jeonju 54896, Korea.
In this work, thermally healable graphene-nanoplate/epoxy (GNP/EP) nanocomposites were investigated. GNPs were used as reinforcement and crosslinking platforms for the diglycidyl ether of bisphenol A-based epoxy resin (DGEBA) through the Diels-Alder (DA) reaction with furfurylamine (FA). The GNPs and FA could then be used as a derivative of diene and dienophile in the DA reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!