The random placement of a large-scale sensor network in an outdoor environment often causes low coverage. In order to effectively improve the coverage of a wireless sensor network in the monitoring area, a coverage optimization algorithm for wireless sensor networks with a Virtual Force-Lévy-embedded Grey Wolf Optimization (VFLGWO) algorithm is proposed. The simulation results show that the VFLGWO algorithm has a better optimization effect on the coverage rate, uniformity, and average moving distance of sensor nodes than a wireless sensor network coverage optimization algorithm using Lévy-embedded Grey Wolf Optimizer, Cuckoo Search algorithm, and Chaotic Particle Swarm Optimization. The VFLGWO algorithm has good adaptability with respect to changes of the number of sensor nodes and the size of the monitoring area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630789PMC
http://dx.doi.org/10.3390/s19122735DOI Listing

Publication Analysis

Top Keywords

wireless sensor
16
sensor network
16
grey wolf
12
optimization algorithm
12
coverage optimization
12
vflgwo algorithm
12
wolf optimization
8
algorithm wireless
8
network coverage
8
monitoring area
8

Similar Publications

Unlabelled: Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots.

View Article and Find Full Text PDF

A novel balloon-type photoacoustic cell (BTPAC) is proposed to facilitate the detection limitations of acetylene (CH) gas achieving ppb level. Here, an ellipsoidal photoacoustic cavity is employed as the platform for gas-light interaction. By strategically directing the excitation source towards the focal point of the ellipsoidal cavity, ensuring its trajectory traverses the focal point upon each reflection from the interior walls.

View Article and Find Full Text PDF

Muscle Fiber-Inspired High-Performance Strain Sensors for Motion Recognition and Control.

Langmuir

January 2025

Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.

The rapid development of wearable technology, flexible electronics, and human-machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex).

View Article and Find Full Text PDF

The rapid development of flexible electronics necessitates simplified processes that integrate heterogeneous materials and structures. In this study, laser engraving is combined with electrochemical deposition (ECD) to directly fabricate various micro/nano-structured components and flexible electronic circuits. A theoretical framework and simulation model are developed to design the on-demand ECD on laser induced graphene (LIG), enabling the generation of multi-scale copper (Cu) materials with controllable oxidation states.

View Article and Find Full Text PDF

Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!