The cellular distribution of three dirhodium(ii) complexes with a paddlewheel structure was investigated using synchrotron-based X-ray fluorescence microscopy and cell viability studies. Complexes with vacant axial sites displayed cytotoxic activity and nuclear accumulation whereas complexes in which the axial positions were blocked showed little to no toxicity nor uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc00521h | DOI Listing |
Dalton Trans
November 2024
Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
Paddlewheel complexes of bimetallic scaffolds are emerging metallic agents in the bioinorganic chemistry landscape. In the most commonly employed construct, these complexes are decorated by the carboxylate moiety, prompting their possible deployment to target either protein or nucleic acid targets. In this study, density functional investigation was performed to assess viable mechanistic routes for the substitution of one acetate ligand with one chelating purine, adenine or guanine, in diruthenium and dirhodium tetraacetate paddlewheel complexes.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43214, United States.
A series of heteroleptic Rh(II,II) complexes, [Rh(μ-DPhF)(μ-bncn)] (; bncn = benzo[]cinnoline), [Rh(μ-DPhF)(μ-OAc)(μ-bncn)] (), and [Rh(μ-OAc)(μ-bncn)] (), is presented, and the excited state and redox properties of each complex was characterized for the photo- and electrocatalytic production of H. The oxidation potentials shift anodically from to , consistent with a highest occupied molecular orbital (HOMO) with significant metal-ligand mixing, Rh(δ*)/DPhF(π/nb). In contrast, modest differences in the first two bncn-localized reversible reduction potentials were observed in - .
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2024
College of Chemistry and Material Science, Hebei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
The dirhodium(II) complexes with bridging phosphine and OAc ligands showed high reactivity and selectivities in olefin dehydrosilylation. In order to determine the structure of the actual catalyst which cannot be determined experimentally, the geometries of the dirhodium catalyst, the detailed catalytic mechanism, and the stereo- and chemo-selectivities of the title reaction were studied using DFT calculations. The results showed that one OAc group is monodentate and the other is bidentate in the dirhodium catalyst C'.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
Dalton Trans
June 2024
University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!