Drugs possessing membrane stabilizing activity might act to diminish the augmented microvascular permeability resulting from acute lung injury. To test this rats were pretreated with quinidine, procainamide, or lidocaine and then given the lung injury-inducing agent thiourea. Vascular permeability, assessed as the extravascular accumulation of radiolabeled protein, was increased more than threefold by thiourea. This increase was diminished by 29, 34, and 43% after pretreatment with procainamide, quinidine, and lidocaine, respectively. Lidocaine also returned the thiourea-induced increase in lung wet weight-to-dry weight ratios to control levels. This protection was not likely due to hemodynamic effects of these agents, since no differences were noted in cardiac output between pretreated rats and those receiving thiourea alone and a small increase in mean pulmonary arterial pressure in the lidocaine-pretreatment group was the only difference noted. O2 metabolites have been implicated in the pathogenesis of thiourea-induced lung injury. None of these agents scavenged O2- or H2O2 directly, but quinidine and procainamide diminished in vitro neutrophil O2- and H2O2 production, and lidocaine inhibited neutrophil H2O2 production. However, neutropenia (PMN less than 100/ml) induced with either vinblastine or cyclophosphamide (Cytoxan) failed to prevent thiourea-induced increases in pulmonary vascular protein leak. In conclusion, procainamide, quinidine, and lidocaine diminished lung injury in rats after thiourea. Although these agents diminish PMN O2 metabolite production in vitro their salutary role in thiourea-induced lung injury appears to be through an unknown mechanism that is independent of their effects on neutrophil O2 metabolite-dependent toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jappl.1987.63.5.1877 | DOI Listing |
Front Pharmacol
January 2025
College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, China.
Background: Acute lung injury (ALI) is a severe condition characterized by inflammation, tissue damage, and persistent activation of the cyclic GMP-AMP (cGAS)-stimulator of interferon genes (STING) pathway, which exacerbates the production of pro-inflammatory mediators and promotes the progression of ALI. Specific inhibition of this pathway has been shown to alleviate ALI symptoms. Kaempferol-3---L-(4″--p-coumaroyl)-rhamnoside (KAE), an active compound found in the flowers of Kitagawa, exhibits anti-inflammatory and antioxidant properties.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Background And Aim: NK cells and NK-cell-derived cytokines were shown to regulate neutrophil activation in acute lung injury (ALI). However, the extent to which ALI regulates lung tissue-resident NK (trNK) activity and their molecular phenotypic alterations are not well defined. We aimed to assess the impact of 1,25-hydroxy-vitamin-D3 [1,125(OH)D] on ALI clinical outcome in a mouse model and effects on lung trNK cell activations.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in critically ill patients. Macrophages, key modulators of immune responses, play a dual role in both promoting and resolving inflammation. Exosomes, small extracellular vesicles released by various cells, carry bioactive molecules that influence macrophage polarization and immune responses.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People's Republic of China.
Background: Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.
View Article and Find Full Text PDFUpdates Surg
January 2025
Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Protective ventilation reduces ventilator-induced acute lung injury postoperatively; however, the optimal strategy for one-lung ventilation (OLV) remains unclear. This study compared three protective ventilation strategies with a postoperative partial pressure of oxygen (PaO)/fraction of inspired oxygen (FiO) ratio to reduce the incidence of immediate postoperative pulmonary complications (PPCs) in patients undergoing lung resection surgery. Eighty-seven patients with ASA physical status I-III requiring OLV for lung resection surgery were randomized into three groups according to the applied ventilation strategies: low tidal volume (V) of 4 mL/kg of predicted body weight (PBW) (LV group), medium V of 6 mL/kg of PBW (MV group), and high V of 8 mL/kg of PBW (HV group).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!