A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Schwann cell plasticity-roles in tissue homeostasis, regeneration, and disease. | LitMetric

How tissues are maintained over a lifetime and repaired following injury are fundamental questions in biology with a disruption to these processes underlying pathologies such as cancer and degenerative disorders. It is becoming increasingly clear that each tissue has a distinct mechanism to maintain homeostasis and respond to injury utilizing different types of stem/progenitor cell populations depending on the insult and/or with a contribution from more differentiated cells that are able to dedifferentiate to aid tissue regeneration. Peripheral nerves are highly quiescent yet show remarkable regenerative capabilities. Remarkably, there is no evidence for a classical stem cell population, rather all cell-types within the nerve are able to proliferate to produce new nerve tissue. Co-ordinating the regeneration of this tissue are Schwann cells (SCs), the main glial cells of the peripheral nervous system. SCs exist in architecturally stable structures that can persist for the lifetime of an animal, however, they are not postmitotic, in that following injury they are reprogrammed at high efficiency to a progenitor-like state, with these cells acting to orchestrate the nerve regeneration process. During nerve regeneration, SCs show little plasticity, maintaining their identity in the repaired tissue. However, once free of the nerve environment they appear to exhibit increased plasticity with reported roles in the repair of other tissues. In this review, we will discuss the mechanisms underlying the homeostasis and regeneration of peripheral nerves and how reprogrammed progenitor-like SCs have broader roles in the repair of other tissues with implications for pathologies such as cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23643DOI Listing

Publication Analysis

Top Keywords

homeostasis regeneration
8
pathologies cancer
8
regeneration peripheral
8
peripheral nerves
8
nerve regeneration
8
roles repair
8
repair tissues
8
tissue
6
regeneration
6
nerve
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!