Autophagy facilitates the release of immunogenic signals following chemotherapy in 3D models of mesothelioma.

Mol Carcinog

Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, California.

Published: October 2019

We have previously shown that nearly half of mesothelioma patients have tumors with low autophagy and that these patients have a significantly worse outcome than those with high autophagy. We hypothesized that autophagy may be beneficial by facilitating immunogenic cell death (ICD) of tumor cells following chemotherapy. An important hallmark of ICD is that death of tumor cells is preceded or accompanied by the release of damage-associated molecular pattern molecules (DAMPs), which then can stimulate an antitumor immune response. Therefore, we measured how autophagy affected the release of three major DAMPs: high mobility group box 1 (HMGB1), ATP, and calreticulin following chemotherapy. We found that autophagy in three-dimensional (3D) models with low autophagy at baseline could be upregulated with the cell-permeant Tat-BECN1 peptide and confirmed that autophagy in 3D models with high autophagy at baseline could be inhibited with MRT 68921 or ATG7 RNAi, as we have previously shown. In in vitro 3D spheroids, we found that, when autophagy was high or upregulated, DAMPs were released following chemotherapy; however, when autophagy was low or inhibited, DAMPs release was significantly impaired. Similarly, in ex vivo tumors, when autophagy was high or upregulated, HMGB1 was released following chemotherapy but, when autophagy was low, HMGB1 release was not seen. We conclude that autophagy can be upregulated in at least some tumors with low autophagy and that upregulation of autophagy can restore the release of DAMPs following chemotherapy. Autophagy may be necessary for ICD in this tumor.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.23050DOI Listing

Publication Analysis

Top Keywords

autophagy
17
chemotherapy autophagy
16
low autophagy
12
tumors low
8
high autophagy
8
icd tumor
8
tumor cells
8
autophagy baseline
8
autophagy high
8
high upregulated
8

Similar Publications

Pancreatic cancer is an aggressive tumor, which is often associated with a poor clinical prognosis and resistance to conventional chemotherapy. Therefore, there is a need to identify new therapeutic markers for pancreatic cancer. Although KIN17 is a highly expressed DNA‑ and RNA‑binding protein in a number of types of human cancer, its role in pancreatic cancer development, especially in relation to progression, is currently unknown.

View Article and Find Full Text PDF

Identification of Programmed Cell Death-related Biomarkers for the Potential Diagnosis and Treatment of Osteoporosis.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.

Background: Osteoporosis (OP) is a skeletal condition characterized by increased susceptibility to fractures. Programmed cell death (PCD) is the orderly process of cells ending their own life that has not been thoroughly explored in relation to OP.

Objective: This study is to investigate PCD-related genes in OP, shedding light on potential mechanisms underlying the disease.

View Article and Find Full Text PDF

KDM4A Silencing Reverses Cisplatin Resistance in Ovarian Cancer Cells by Reducing Mitophagy via SNCA Transcriptional Inactivation.

Curr Mol Med

January 2025

Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Haishu District, Ningbo City, Zhejiang Province, 315010, China.

Background: Ovarian cancer is one of the deadliest gynecologic cancers, with chemotherapy resistance as the greatest clinical challenge. Autophagy occurrence is associated with cisplatin (DDP)-resistant ovarian cancer cells. Herein, the role and mechanism of alpha-synuclein (SNCA), the autophagy-related gene, in DDP resistance of ovarian cancer cells are explored.

View Article and Find Full Text PDF

Abscission is a tightly regulated process in which plants shed unnecessary, infected, damaged, or aging organs, as well as ripe fruits, through predetermined abscission zones in response to developmental, hormonal, and environmental signals. Despite its importance, the underlying mechanisms remain incompletely understood. This study highlights the deleterious effects of abscission on chloroplast ultrastructure in the cells of the tomato flower pedicel abscission zone, revealing spatiotemporal differential gene expression and key transcriptional networks involved in chloroplast vesiculation during abscission.

View Article and Find Full Text PDF

Background: Erectile dysfunction is a condition with a rapidly increasing prevalence globally with a strong correlation to the increase in obesity and cardiovascular disease rates.

Aim: The aim of the current study is to investigate the potential role of tubacin, a histone deacetylase 6 (HDAC6) inhibitor, in restoring erectile function in a hypercholesterolemia-induced endothelial dysfunction model.

Methods: Thirty-nine male C57Bl/6 J mice were divided into 3 groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!