Nano-sized particles of rutile TiO is a promising material for cheap high-capacity anodes for Li-ion batteries. It is well-known that rutile undergoes an irreversible order-disorder transition upon deep discharge. However, in the disordered state, the LiTiO material retains a high reversible ion-storage capacity of >200 mA h g. Despite the promising properties of the material, the structural transition and evolution during the repeated battery operation has so far been studied only by diffraction-based methods, which only provide insight into the part that retains some long-range order. Here, we utilize a combination of ex situ and operando total scattering with pair distribution function analysis and transmission electron microscopy to investigate the atomic-scale structures of the disordered LiTiO forming upon the discharge of nano-rutile TiO as well as to elucidate the phase behavior in the material during the repeated charge-discharge process. Our investigation reveals that nano-rutile upon Li-intercalation transforms into a composite of ∼5 nm domains of a layered LiTiOα-NaFeO-type structure with ∼1 nm LiTiO grain boundaries with a columbite-like structural motif. During repeated charge-discharge cycling, the structure of this composite is retained and stores Li through a complete solid-solution transition with a remarkably small volume change of only 1 vol%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr01228aDOI Listing

Publication Analysis

Top Keywords

order-disorder transition
8
nano-rutile tio
8
repeated charge-discharge
8
material
5
transition nano-rutile
4
tio anodes
4
anodes high
4
high capacity
4
capacity low-volume
4
low-volume change
4

Similar Publications

Liquid Structure of Magnesium Aluminates.

Materials (Basel)

December 2024

Interfaces, Confinement, Matériaux et Nanostructures, 45071 Orléans Cedex 2, France.

Magnesium aluminates (MgO)(AlO) belong to a class of refractory materials with important applications in glass and glass-ceramic technologies. Typically, these materials are fabricated from high-temperature molten phases. However, due to the difficulties in making measurements at very high temperatures, information on liquid-state structure and properties is limited.

View Article and Find Full Text PDF

Orientational Disorder and Molecular Correlations in Hybrid Organic-Inorganic Perovskites: From Fundamental Insights to Technological Applications.

ACS Appl Mater Interfaces

January 2025

Group of Characterization of Materials, Departament de Física, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona 08019, Spain.

Hybrid organic-inorganic perovskites (HOIP) have emerged in recent years as highly promising semiconducting materials for a wide range of optoelectronic and energy applications. Nevertheless, the rotational dynamics of the organic components and many-molecule interdependencies, which may strongly impact the functional properties of HOIP, are not yet fully understood. In this study, we quantitatively analyze the orientational disorder and molecular correlations in archetypal perovskite CHNHPbI (MAPI) by performing comprehensive molecular dynamics simulations and entropy calculations.

View Article and Find Full Text PDF

Crown ether inclusion compound 3,4-difluoroanilinium di(methanesulfonyl)amidate-18-crown-6 (1/1) clathrate.

Acta Crystallogr C Struct Chem

January 2025

Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.

In recent years, molecular-based ferroelectric materials have attracted widespread research interest due to their excellent performance. Among them, host-guest-type crown ether inclusion compounds composed of organic ammonium cations, crown ether molecules and corresponding anions have become a star component in the design of molecular-based ferroelectric materials because they are prone to order-disorder phase transitions. Many anions have been studied extensively as counter-ions, such as bis(trifluoromethanesulfonyl)amidate (TFSA), PF and [FeCl].

View Article and Find Full Text PDF

Polymorphs commonly exist for various materials, enabling phase engineering for diverse material properties. While the crystal structures of different polymorphs can, in principle, be experimentally characterized, interpreting and understanding complex crystal structures can be very challenging. Using Ga_{2}O_{3} as a prototype, here we show that the crystal structure of γ-Ga_{2}O_{3} has long been misinterpreted from either theory or experiment.

View Article and Find Full Text PDF

A Ferroelastic Salt Cocrystal with Ultraviolet Emission.

Inorg Chem

December 2024

Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.

The coexistence and coupling of photoluminescence and ferroelasticity in a single matter are vitally important for developing multifunctional materials and devices. However, the effective construction of ferroelastics with efficient photoluminescence, especially in the ultraviolet range, is a great challenge. In this work, a salt cocrystal, (DPA)(DPAH)PF (DPA = diphenylamine, DPAH = diphenylamine cation), with ultraviolet emission and ferroelasticity was reported by introducing the anion group PF in the parent DPA crystal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!