The epidermal growth factor receptor (EGFR) located in dorsal root ganglion has been found as a new target for chronic pain treatment. However, it is not clear whether the change of EGFR expression in the dorsal root ganglion contributes to neuropathic pain development. In this study, we used a chronic compression of unilateral lumbar dorsal root ganglions (CCD)-induced rat neuropathic pain model and found that CCD caused the upregulation of both phosphorylated EGFR and total EGFR expression in compressed lumbar 4/5 (L4/L5) dorsal root ganglions by western blotting and immunohistochemistry methods. Either inhibition of EGFR activation by EGFR inhibitor or knockdown of EGFR expression by EGFR small interference RNA (siRNA) relieved CCD-induced pain hypersensitivities to mechanical, thermal, and cold stimuli in rats. Moreover, EGFR knockdown reversed CCD-induced the increase of intracellular mammalian target of rapamycin (mTOR) expression as well as the activation of the satellite glial cells in the ipsilateral compressed L4/L5 dorsal root ganglions. These findings suggest that not only activated EGFR but also total EGFR contribute to CCD-induced neuropathic pain by enhancing intracellular mTOR signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585252PMC
http://dx.doi.org/10.1177/1744806919857297DOI Listing

Publication Analysis

Top Keywords

dorsal root
28
neuropathic pain
16
root ganglion
12
egfr expression
12
root ganglions
12
egfr
11
ganglion contributes
8
chronic compression
8
egfr total
8
total egfr
8

Similar Publications

Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkB mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI.

View Article and Find Full Text PDF

Study Objective: We developed an innovative method for ultrasound-assisted thoracic epidural catheter placement and assessed its potential to reduce procedural duration for trainees.

Design: A cadaveric observational study and a clinical randomized controlled trial.

Setting: Sapporo Medical University Hospital.

View Article and Find Full Text PDF

Comparative outcomes of microsurgical dorsal root entry zone lesioning (DREZotomy) for intractable neuropathic pain in spinal cord and cauda equina injuries.

Neurosurg Rev

January 2025

Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, 10700, Bangkok, Thailand.

Treatment of neuropathic pain in patients with spinal cord injury (SCI) and cauda equina injury (CEI) remains challenging. Dorsal root entry zone lesioning (DREZL) or DREZotomy is a viable surgical option for refractory cases. This study aimed to compare DREZL surgical outcomes between patients with SCI and those with CEI and to identify predictors of postoperative pain relief.

View Article and Find Full Text PDF

The ability of neurons to sense and respond to damage is crucial for maintaining homeostasis and facilitating nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has uncovered a significant transcriptional response to axon injury, which influences survival and regenerative outcomes. In contrast, the injury responses of most supraspinal cell types, which display limited regeneration after spinal damage, remain mostly unknown.

View Article and Find Full Text PDF

Neuronal Tracing and Visualization of Nerve Injury by a Membrane-Anchoring Aggregation-Induced Emission Probe.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China.

Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!