A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Therapeutic protein purity and fragmented species characterization by capillary electrophoresis sodium dodecyl sulfate using systematic hybrid cleavage and forced degradation. | LitMetric

AI Article Synopsis

  • Positive identification of peaks in CE-SDS helps understand protein structures and is essential for developing accurate assays that differentiate between therapeutic protein components and their impurities.
  • Directly identifying impurity peaks in CE-SDS is challenging, leading to the proposal of a systematic workflow to characterize these fragmentation peaks.
  • The workflow involves forced degradation of monoclonal antibodies, evaluation of fragment characteristics, and confirmation through mass spectrometry, ultimately providing valuable insights for protein characterization.

Article Abstract

Positive identification of capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) electropherogram peaks provides information to understand protein molecular characteristics at the structural level. It is critical in the design of a robust assay that can accurately resolve, differentiate, and quantify all therapeutic protein components including fragmented species, which are considered as product related impurities. However, direct identification of the impurity peaks observed in CE-SDS is a challenging and oftentimes an ambiguous task. This paper proposed a systematic workflow for characterizing CE-SDS fragmentation peaks. Forced degradation of monoclonal antibody (mAb) by multiple stress methods was utilized to induce fragmentation and species enrichment. The characteristics, such as size and the clipped region of sequence, were then evaluated based on multiple enzymatic treatment and particle reduction. The identified fragments were further confirmed using tryptic digestion and liquid chromatography coupled with mass spectrometry (LC-MS) analysis. Common fragment sizes and clipping locations are identified after evaluating multiple IgG molecules. The methodology and procedure described in this article are readily deployable and will provide necessary information for method, process, and product characterizations. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-019-01942-8DOI Listing

Publication Analysis

Top Keywords

therapeutic protein
8
fragmented species
8
dodecyl sulfate
8
forced degradation
8
protein purity
4
purity fragmented
4
species characterization
4
characterization capillary
4
capillary electrophoresis
4
electrophoresis sodium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!