AI Article Synopsis

  • Electronic health records (EHRs) are widely used in healthcare, but issues with interoperability and technical requirements hinder their application in research, prompting the need for more accessible tools for researchers.
  • PatientExploreR is a user-friendly application built on the R/Shiny framework that allows researchers to interact with EHR data, creating dynamic reports and visualizations without needing programming skills.
  • The software is open-source and can be downloaded from GitHub, providing researchers with easy access to EHR data and a synthesized data sandbox for those without direct EHR access.

Article Abstract

Motivation: Electronic health records (EHRs) are quickly becoming omnipresent in healthcare, but interoperability issues and technical demands limit their use for biomedical and clinical research. Interactive and flexible software that interfaces directly with EHR data structured around a common data model (CDM) could accelerate more EHR-based research by making the data more accessible to researchers who lack computational expertise and/or domain knowledge.

Results: We present PatientExploreR, an extensible application built on the R/Shiny framework that interfaces with a relational database of EHR data in the Observational Medical Outcomes Partnership CDM format. PatientExploreR produces patient-level interactive and dynamic reports and facilitates visualization of clinical data without any programming required. It allows researchers to easily construct and export patient cohorts from the EHR for analysis with other software. This application could enable easier exploration of patient-level data for physicians and researchers. PatientExploreR can incorporate EHR data from any institution that employs the CDM for users with approved access. The software code is free and open source under the MIT license, enabling institutions to install and users to expand and modify the application for their own purposes.

Availability And Implementation: PatientExploreR can be freely obtained from GitHub: https://github.com/BenGlicksberg/PatientExploreR. We provide instructions for how researchers with approved access to their institutional EHR can use this package. We also release an open sandbox server of synthesized patient data for users without EHR access to explore: http://patientexplorer.ucsf.edu.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821222PMC
http://dx.doi.org/10.1093/bioinformatics/btz409DOI Listing

Publication Analysis

Top Keywords

ehr data
12
data
10
patientexplorer extensible
8
extensible application
8
electronic health
8
health records
8
common data
8
data model
8
approved access
8
ehr
6

Similar Publications

Evaluation of COVID-19 Diagnosis Codes for Identification of SARS-CoV-2 Infections in a Nursing Home Cohort, 2022-2023.

J Am Med Dir Assoc

January 2025

Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Objectives: This study aimed to evaluate the utility of electronic health record (EHR) diagnosis codes for monitoring SARS-CoV-2 infections among nursing home residents.

Design: A retrospective cohort study design was used to analyze data collected from nursing homes operating under the tradename Signature Healthcare between January 2022 and June 2023.

Setting And Participants: Data from 31,136 nursing home residents across 76 facilities in Kentucky, Tennessee, Indiana, Ohio, North Carolina, Georgia, Alabama, and Virginia were included.

View Article and Find Full Text PDF

AI-based models to predict decompensation on traumatic brain injury patients.

Comput Biol Med

January 2025

INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal; FCTUC - Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal. Electronic address:

Traumatic Brain Injury (TBI) is a form of brain injury caused by external forces, resulting in temporary or permanent impairment of brain function. Despite advancements in healthcare, TBI mortality rates can reach 30%-40% in severe cases. This study aims to assist clinical decision-making and enhance patient care for TBI-related complications by employing Artificial Intelligence (AI) methods and data-driven approaches to predict decompensation.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) is a common complication after major surgery and is associated with poor outcomes in older adults. Early identification of patients at high risk of POD can enable targeted prevention efforts. However, existing POD prediction models require inpatient data collected during the hospital stay, which delays predictions and limits scalability.

View Article and Find Full Text PDF

Amid an aging global population, heart failure has become a leading cause of hospitalization among older people. Its high prevalence and mortality rates underscore the importance of accurate mortality prediction for swift disease progression assessment and better patient outcomes. The evolution of artificial intelligence (AI) presents new avenues for predicting heart failure mortality.

View Article and Find Full Text PDF

Background: Natural language processing (NLP) and machine learning (ML) techniques may help harness unstructured free-text electronic health record (EHR) data to detect adverse drug events (ADEs) and thus improve pharmacovigilance. However, evidence of their real-world effectiveness remains unclear.

Objective: To summarise the evidence on the effectiveness of NLP/ML in detecting ADEs from unstructured EHR data and ultimately improve pharmacovigilance in comparison to other data sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!