Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-dimensional Bell-like states are necessary for increasing the channel capacity of the quantum protocol. However, their preparation and measurement are still huge challenges, especially for the latter. Here, we prepare an initial eight-dimensional Bell-like state based on hyperentanglement of spin and orbital angular momentum (OAM) of the first and the third orders. We design simple unitary operations to produce eight Bell-like states, which can be distinguished completely in theory among each other. We propose and illustrate a multiple projective measurement scheme composed of only linear optical elements and experimentally demonstrate that all the eight hyperentangled Bell-like states can be completely distinguished by our scheme. Our idea of manipulating the eight Bell-like states is beneficial to achieve the 3-bit channel capacity of quantum protocol, opening the door for extending applications of OAM states in future quantum information technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570514 | PMC |
http://dx.doi.org/10.1126/sciadv.aat9206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!