In proestrus, the changing gonadal hormone milieu alters the physiological properties of GnRH neurons and contributes to the development of the GnRH surge. We hypothesized that proestrus also influences the expression of different ion channel genes in mouse GnRH neurons. Therefore, we performed gene expression profiling of GnRH neurons collected from intact, proestrous and metestrous GnRH-GFP transgenic mice, respectively. Proestrus changed the expression of 37 ion channel and 8 calcium homeostasis-regulating genes. Voltage-gated sodium channels responded with upregulation of three alpha subunits (, , and ). Within the voltage-gated potassium channel class, , , , and were upregulated, while others (, , , and ) underwent downregulation. Proestrus also had impact on inwardly rectifying potassium channel subunits manifested in enhanced expression of and genes, whereas , , and subunit genes were downregulated. The two-pore domain potassium channels also showed differential expression with upregulation of and reduced expression of three subunit genes (, , and ). Changes in expression of chloride channels involved both the voltage-gated ( and ) and the intracellular () subtypes. Regarding the pore-forming alpha-1 subunits of voltage-gated calcium channels, two ( and ) were upregulated, while showed downregulation. The ancillary subunits were also differentially regulated (, , , , , , , and ). In addition, ryanodine receptor 1 () gene was downregulated, while a transient receptor potential cation channel () gene showed enhanced expression. Genes encoding proteins regulating the intracellular calcium homeostasis were also influenced (, , , , , , and ). The differential expression of genes coding for ion channel proteins in GnRH neurons at late proestrus indicates that the altering hormone milieu contributes to remodeling of different kinds of ion channels of GnRH neurons, which might be a prerequisite of enhanced cellular activity of GnRH neurons and the subsequent surge release of the neurohormone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554425 | PMC |
http://dx.doi.org/10.3389/fnmol.2019.00137 | DOI Listing |
J Pediatr Endocrinol Metab
January 2025
Department of Paediatrics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Objectives: Kisspeptin plays a major role in the onset of puberty by stimulating the gonadotropin-releasing hormone (GnRH) neurons. The aim of this study was to investigate whether GnRH inhibits kisspeptin secretion via a negative feedback mechanism and potential associations between kisspeptin levels and other hormones of importance for pubertal onset.
Methods: Thirteen girls with suspected central precocious puberty underwent a GnRH stimulation test twice in a randomized, placebo-controlled manner.
Mol Cell Endocrinol
January 2025
Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus. Electronic address:
Background And Aims: Puberty is a crucial developmental stage marked by the transition from childhood to adulthood, organized by complex hormonal signaling within the neuroendocrine system. The hypothalamus, a central region in this system, regulates pubertal functions through the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, essential in puberty control, release GnRH in a pulsatile manner, initiating the production of sex hormones.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.
View Article and Find Full Text PDFAndrology
January 2025
Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK.
The hypothalamic-pituitary-gonadal axis is regulated by the gonadotropin-releasing hormone pulse generator in the hypothalamus. This is comprised of neurons that secrete kisspeptin in a pulsatile manner to stimulate the release of GnRH, and, in turn, downstream gonadotropins from the pituitary gland, and subsequently sex steroids and gametogenesis from the gonads. Many reproductive disorders in both males and females are characterized by hypothalamic dysfunction, including functional disorders (such as age-related hypogonadism, obesity-related secondary hypogonadism, hyperprolactinemia, functional hypothalamic amenorrhea and polycystic ovary syndrome), structural pathologies (such as craniopharyngiomas or radiation or surgery-related hypothalamic dysfunction), and pubertal disorders (constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism).
View Article and Find Full Text PDFPhysiol Rev
January 2025
Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which co-express NKB, regulate the activity of gonadotropin releasing hormone (GnRH) neurons, and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!