A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system. | LitMetric

Crossing the blood-brain barrier (BBB) is crucial for drug delivery to the brain and for treatment of brain tumors, such as glioblastoma, the most common of all primary malignant brain tumors. Microbubble (MB) is oscillated and destroyed by controlling ultrasound (US) parameters. This oscillation and destruction of MB can open the BBB transiently, and a drug can be delivered to the brain. For testing the efficiency of delivery to the brain, we synthesized a US-sensitizing nanoparticle (NP) complex via chemically binding MBs and NPs for the BBB opening, including near-infrared dye-incorporated albumin nanoparticles (NIR-Alb NPs) for fluorescence detection. The human-derived, biocompatible NIR-Alb NPs did not show significant cytotoxicity to 500 μg/mL for 3 days in four human glioma cell lines. In an in vivo animal study, some US parameters were investigated to determine optimal conditions. The optimized US conditions were applied in a U87MG orthotopic mouse model. We found that the fluorescence intensity in the brain was 1.5 times higher than in the control group. Our US-sensitizing NP complex and US technique could become one of the critical technologies for drug delivery to the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539164PMC
http://dx.doi.org/10.2147/IJN.S193258DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
delivery brain
12
nanoparticle complex
8
blood-brain barrier
8
brain tumors
8
nir-alb nps
8
brain
7
ultrasound-sensitizing nanoparticle
4
complex overcoming
4
overcoming blood-brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!