This paper reports the auxetic behavior of modified conventional non-woven fabric. The auxetic behavior of fabric was achieved by forming rotating square unit geometry with a highly ordered pattern of slits by laser cutting. Two commercial needle-punched non-woven fabric used as lining and the reinforcement fabric for the footwear industry were investigated. The influence of two rotating square unit sizes was analyzed for each fabric. The original and modified fabric samples were subjected to quasi-static tensile load by using the Tinius Olsen testing machine to observe the in-plane mechanical properties and deformation behavior of tested samples. The tests were recorded with a full high-definition (HD) digital camera and the video recognition technique was applied to determine the Poisson's ratio evolution during testing. The results show that the modified samples exhibit a much lower breaking force due to induced slits, which in turn limits the application of such modified fabric to low tensile loads. The samples with smaller rotating cell sizes exhibit the highest negative Poisson's ratio during tensile loading through the entire longitudinal strain range until rupture. Non-woven fabric with equal distribution and orientation of fibers in both directions offer better auxetic response with a smaller out-of-plane rotation of rotating unit cells. The out-of-plane rotation of unit cells in non-homogenous samples is higher in machine direction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630407 | PMC |
http://dx.doi.org/10.3390/polym11061040 | DOI Listing |
Int J Biol Macromol
December 2024
Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan. Electronic address:
Bacterial infections in wounds, especially in patients with chronic conditions like diabetic wounds, pose significant treatment challenges. Addressing the susceptibility to infection is crucial, and the development of functional dressings to prevent bacterial invasion has proven a promising strategy. Cellulose nanocrystals (CNCs), derived from bio-resources and functioning as nanoparticles (NPs), were modified with poly[2-(tert-butylamino) ethyl methacrylate] (PTA) through atom transfer radical polymerization (ATRP) to create CNCs-graft-PTA NPs (CNPs).
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China. Electronic address:
The heat and corrosion resistance of traditional membranes is inadequate, thus making them inadequate for the separation/filtration needs of harsh environments. Polyphenylene sulfide(PPS) can be used to develop new-generation membrane materials, but PPS has problems such as hydrophobicity and UV resistance. This article proposes a PPS membrane for efficient separation/filtration under extreme conditions, which uses melt-blown PPS non-woven fabric and undergoes oxidation and nitrification modification.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh.
Micromachines (Basel)
November 2024
School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
J Biomed Mater Res B Appl Biomater
December 2024
BEST/CB3S, Université Sorbonne Paris Nord, Villetaneuse, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!