Hydrocarbon-degrading bacteria are important resources for use in phytoremediation applications. Yet, for many hydrocarbonoclastic strains the genetic information regarding pollutant degradation and detoxification has not been thoroughly revealed. In this study, hydrocarbon-degrading bacteria were isolated from a long-term oil-polluted soil in Bóbrka, Poland. spp. was the most dominant species. Of all 69 isolated strains tested in the laboratory using qualitative biochemical assays, 61% showed the capability to use diesel as sole carbon source, 33% could produce indole, 19% produced siderophores, 36% produced organic acids, and 54% were capable of producing 1-aminocyclopropane-1-carboxylate (ACC)-deaminase. From all morphologically and genetically different strains, two representative spp., strain VI4.1 and VI4T1, were selected for genome sequencing. Genomic analyses indicated the presence of the full naphthalene dioxygenase operon (plasmid and chromosomal), of genes involved in the degradation of BTEX compounds (Benzene, Toluene, Ethylbenzene, Xylene) and alkanes ( gene) as well as the anthranilate degradation pathway (strain VI4T1) and terephthalate dioxygenase protein (strain VI4.1). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) analyses confirmed naphthalene and BTEX degradation within seven days. Motility, resistance to abiotic stresses, high and low temperatures, low pH, and salinity were confirmed at the genetic level and experimentally verified. The presence of multiple degradative and plant growth promotion genes, together with the in vitro experimental evidence, indicates the high value of these two strains and their potential use for sustainable site clean-up.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628094 | PMC |
http://dx.doi.org/10.3390/genes10060443 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Research and Innovation, MATIS, Reykjavk, Iceland.
A novel bacterium, designated 19SA41, was isolated from the air of the Icelandic volcanic island Surtsey. Cells of strain 19SA41 are Gram-stain-negative, strictly aerobic, non-motile rods and form pale yellow-pigmented colonies. The strain grows at 4-30 °C (optimum, 22 °C), at pH 6-10 (optimum, pH 7.
View Article and Find Full Text PDFChemistry
January 2025
University of Eastern Finland, Department of Chermistry, Yliopistokatu 7, 80100, Joensuu, FINLAND.
The structure and reactivity of small methylaluminoxane (MAO) species (MeAlO)n(Me3Al)m (n = 1-8) have been investigated using DFT (M06-2X), MP2, and CCSD(T) calculations. This hierarchy of methods reveals that DFT artificially stabilizes structures containing 4-coordinate oxygen atoms while higher-level calculations demonstrate a clear preference for structures with 3-coordinate oxygen and 4-coordinate aluminum centers. Analysis of ionization pathways shows these neutral MAO molecules form anions through either methide or Me2Al+ abstraction, with the latter mechanism dominant for sheet structures (n = 5-8).
View Article and Find Full Text PDFNat Prod Res
January 2025
School of Biological Science and Technology, University of Jinan, Jinan, China.
Five previously unreported 5-hydroxymethylfurfural (5-HMF) derivatives, including chinenfurfurals A () and B () as 5-HMF-citric acid hybrids and chinenfurfurals C-E (-) as 5-HMF oligomers, as well as four known analogues (-), were isolated from the fruits of a well-known Chinese herbal species . The structures of these furfural compounds were established by detailed analyses of spectroscopic data especially HRMS and NMR, and it is the first report of furfural type constituents from the title species. The anti-inflammatory property of them was further evaluated by testing their inhibition against the production of nitric oxide in lipopolysaccharide-activated murine RAW264.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, USA.
Unlabelled: is a foodborne pathogen that poses a significant threat to global public health. It affects several animal species, including horses. infections in horses can be either asymptomatic or cause severe clinical illness.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus as well as with common bean ( L.). are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!