The most popular modeling approach for dielectrophoresis (DEP) is the effective multipole (EM) method. It approximates the polarization-induced charge distribution in an object of interest by a set of multipolar moments. The Coulombic interaction of these moments with the external polarizing electric field then gives the DEP force and torque acting on the object. The multipolar moments for objects placed in arbitrary harmonic electric fields are, however, known only for spherical objects. This shape restriction significantly limits the use of the EM method. We present an approach for online (in real time) computation of multipolar moments for objects of arbitrary shapes having even arbitrary internal composition (inhomogeneous objects, more different materials, etc.). We exploit orthonormality of spherical harmonics to extract the multipolar moments from a numerical simulation of the polarized object. This can be done in advance (offline) for a set of external electric fields forming a basis so that the superposition principle can then be used for online operation. DEP force and torque can thus be computed in fractions of a second, which is needed, for example, in model-based control applications. We validate the proposed model against reference numerical solutions obtained using Maxwell stress tensor. We also analyze the importance of the higher-order multipolar moments using a sample case of a Tetris-shaped micro-object placed inside a quadrupolar microelectrode array and exposed to electrorotation. The implementation of the model in Matlab and Comsol is offered for free download.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.053307 | DOI Listing |
Philos Trans A Math Phys Eng Sci
December 2024
School of Physics, Engineering and Technology, University of York, England, YO10 5DD, UK.
Multipolar quantum optics deals with the interaction of light with matter as a many-body bound system of charged particles where the coupling to electromagnetic fields is in terms of the multipolar electric polarization and magnetization. We describe two transformations applied to the conventional non-relativistic formalism, namely a gauge transformation applied directly to the fields at the Lagrangian stage and a unitary transformation applied to the old Hamiltonian. We show how such transformations lead to the same Power-Zienau-Woolley (PZW) formulation of the quantum electrodynamics (QED) of an overall electrically neutral many-body bound system of charges, including the internal motion as well as the gross dynamics of the centre of mass.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
Electrically switchable second harmonic generation (SHG) is highly valuable in electro-optic modulators, which can be deployed in data communication and quantum optics. Coupling circular dichroism (CD) with an electrically controlled SHG process is advantageous because it enhances the signal transmission bandwidth and security while enabling multiple modulation modes for optical logic. However, ferroelectrically switchable chiral second-order nonlinearity is rarely reported.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA.
We study the Kondo lattice model of multipolar magnetic moments interacting with conduction electrons on a triangular lattice. Bond-dependent electron hoppings induce a compasslike anisotropy in the effective Ruderman-Kittel-Kasuya-Yosida interaction between multipolar moments. This unique anisotropy stabilizes multipolar skyrmion crystals at zero magnetic field.
View Article and Find Full Text PDFJ Phys Chem A
October 2024
Department of Chemistry, University of Manchester, Manchester M13 9PL, Great Britain.
FFLUX is a next-generation, machine-learnt force field built on three cornerstones: quantum chemical topology, Gaussian process regression, and (high-rank) multipolar electrostatics. It is capable of performing molecular dynamics with near-quantum accuracy at a lower computational cost than standard molecular dynamics. Previous work with FFLUX was concerned with water and formamide.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2024
Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States.
We introduce a general framework for many-body force fields, the Completely Multipolar Model (CMM), that utilizes multipolar electrical moments modulated by exponential decay of electron density as a common functional form for all terms of an energy decomposition analysis of intermolecular interactions. With this common functional form, the CMM model establishes well-formulated damped tensors that reach the correct asymptotes at both long- and short-range while formally ensuring no short-range catastrophes. CMM describes the separable EDA terms of dispersion, exchange polarization, and Pauli repulsion with short-ranged anisotropy, polarization as intramolecular charge fluctuations and induced dipoles, while charge transfer describes explicit movement of charge between molecules, and naturally describes many-body charge transfer by coupling into the polarization equations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!