In a sheared and confined granular flow, the mean force and the force fluctuations on a rigid wall are studied by means of numerical simulations based on the discrete element method. An original periodic immersed-wall system is designed to investigate a wide range of confinement pressure and shearing velocity imposed at the top of the flow, considering different obstacle heights. The mean pressure on the wall relative to the confinement pressure is found to be a monotonic function of the boundary macroscopic inertial number which encapsulates the confinement pressure, the shearing velocity, and the thickness of the sheared layer above the wall. The one-to-one relation is slightly affected by the length of the granular system. The force fluctuations on the wall are quantified through the analysis of both the distributions of grain-wall contact forces and the autocorrelation of force time series. The distributions narrow as the boundary macroscopic inertial number decreases, moving from asymmetric log-normal shape to nearly Gaussian-type shape. That evolution of the grain-wall force distributions is accompanied at the lowest inertial numbers by the occurrence of a system memory in terms of the force transmitted to the wall, provided that the system length is not too large. Moreover, the distributions of grain-wall contact forces are unchanged when the inertial number is increased above a critical value. All those results allow to clearly identify the transitions from quasistatic to dense inertial, and from dense inertial to collisional, granular flow regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.052901 | DOI Listing |
Cogn Neurodyn
December 2025
Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China.
Insomnia is a common mental illness seriously affecting people lives, that might progress to major depression. However, the neural mechanism of patients with CID comorbid MDD remain unclear. Combining fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity (FC), this study investigated abnormality in local and long-range neural activity of patients with CID comorbid MDD.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Postgraduate Union Training Base of Jinzhou Medical University, PLA Rocket Force Characteristic Medical Center, Beijing, China.
An increasing number of treatment guidelines recommend rapid initiation of antiretroviral therapy (ART) after the diagnosis of human immunodeficiency virus (HIV) infection. However, data on the association between rapid ART initiation and alterations in brain structure and function remain limited in people with HIV (PWH). A cross-sectional analysis was conducted on HIV-positive men who have sex with men (MSM) undergoing ART.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Fisheries Resource Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India.
Wetlands are dynamic ecosystems vital for sustaining ecological health and development at regional and global scales. Geospatial tools have emerged as essential for managing wetland ecosystems. This study assessed the spatiotemporal dynamics of water spread in the Point Calimere Wetland, a coastal Ramsar site located along the Bay of Bengal, India, from 1984 to 2023.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy.
Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Institute of Informatics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
Complex networks, from neuronal assemblies to social systems, can exhibit abrupt, system-wide transitions without external forcing. These endogenously generated "noise-induced transitions" emerge from the intricate interplay between network structure and local dynamics, yet their underlying mechanisms remain elusive. Our study unveils two critical roles that nodes play in catalyzing these transitions within dynamical networks governed by the Boltzmann-Gibbs distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!