Boundary-induced inhomogeneity of particle layers in the solidification of suspensions.

Phys Rev E

Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France.

Published: May 2019

AI Article Synopsis

  • The study examines the freezing behavior of suspensions, revealing that a layer of compacted particles forms at the solidification front, impacting the freezing process.
  • This layer's thickness is influenced by sample depth, highlighting how particle density becomes inhomogeneous during crystallization near solid boundaries.
  • A mechanical model links this density inhomogeneity to permeability changes, providing insights that could help in modeling suspensions with varying particle sizes.

Article Abstract

When a suspension freezes, a compacted particle layer builds up at the solidification front with noticeable implications on the freezing process. In a directional solidification experiment of monodisperse suspensions in thin samples, we evidence a link between the thickness of this layer and the sample depth. We attribute it to an inhomogeneity of particle density that is attested by the evidence of crystallization at the plates and of random close packing far from them. A mechanical model based on the resulting modifications of permeability enables us to relate the layer thickness to this inhomogeneity and to select the distribution of particle density that yields the best fit to our data. This distribution involves an influence length of sample plates of about 11 particle diameters. Altogether, these results clarify the implications of boundaries on suspension freezing. They may be useful to model polydisperse suspensions with large particles playing the role of smooth boundaries with respect to small ones.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.052601DOI Listing

Publication Analysis

Top Keywords

inhomogeneity particle
8
particle density
8
particle
5
boundary-induced inhomogeneity
4
particle layers
4
layers solidification
4
solidification suspensions
4
suspensions suspension
4
suspension freezes
4
freezes compacted
4

Similar Publications

Heterogeneity is ubiquitous in biological and synthetic active matter systems that are inherently out of equilibrium. Typically, such active mixtures involve not only conservative interactions between the constituents but also nonreciprocal couplings, whose full consequences for the collective behavior still remain elusive. Here, we study a minimal active nonreciprocal mixture with both symmetric isotropic and nonreciprocal polar interactions.

View Article and Find Full Text PDF

Precise Synthesis of 4.75 V-Tolerant LiCoO with Homogeneous Delithiation and Reduced Internal Strain.

J Am Chem Soc

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li intercalation/deintercalation reactions.

View Article and Find Full Text PDF

Aim: To study the dosimetric behavior of dose computational algorithms in inhomogeneous medium using CMS XiO and MONACO treatment planning system (TPS) for 4 megavoltage (MV), 6 MV and 15 MV photon beam energies.

Material And Methods: Styrofoam blocks of thickness 1.90 cm, 3.

View Article and Find Full Text PDF

On the anatomy of acoustic emission.

J Acoust Soc Am

December 2024

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Abrupt, local frictional fault failure comprises a displacement that is normally accompanied by acoustic emission (AE)-an impulsive elastic wave broadcast with an amplitude proportional to particle velocity. The aggregate of these displacements is the basic fault motion. In laboratory shear experiments, the examination of a sequence of laboratory earthquakes includes continuous measurements of fault motion and the associated AE that is broadcast.

View Article and Find Full Text PDF

In this study, thymol-loaded nanoemulsion (THYNE) was incorporated into a mixture of egg white protein and hyaluronic acid to prepare antibacterial biopolymer coatings. The oil phase of the nanoemulsion (NE) was prepared by mixing different mass ratios of thymol and corn oil. NE was formed using ultrasonic emulsification, and the physicochemical properties of the NE were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!