Simpler free-energy functional of the Debye-Hückel model of fluids and the nonuniqueness of free-energy functionals in the theory of fluids.

Phys Rev E

Laboratoire "Interactions, Dynamiques et Lasers", UMR 9222, CEA-CNRS-Université Paris-Saclay, Centre d'Études de Saclay, F-91191 Gif-sur-Yvette Cedex, France.

Published: May 2019

In previous publications [Piron and Blenski, Phys. Rev. E 94, 062128 (2016)2470-004510.1103/PhysRevE.94.062128; Blenski and Piron, High Energy Density Phys. 24, 28 (2017)1574-181810.1016/j.hedp.2017.05.005], the authors have proposed Debye-Hückel-approximate free-energy functionals of the pair distribution functions for one-component fluids and two-component plasmas. These functionals yield the corresponding Debye-Hückel integral equations when they are minimized with respect to the pair distribution functions, lead to correct thermodynamic relations, and fulfill the virial theorem. In the present paper, we update our results by providing simpler functionals that have the same properties. We relate these functionals to the approaches of Lado [Phys. Rev. A 8, 2548 (1973)0556-279110.1103/PhysRevA.8.2548] and of Olivares and McQuarrie [J. Chem. Phys. 65, 3604 (1976)JCPSA60021-960610.1063/1.433545]. We also discuss briefly the nonuniqueness issue that is raised by these results.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.052134DOI Listing

Publication Analysis

Top Keywords

free-energy functionals
8
pair distribution
8
distribution functions
8
functionals
5
simpler free-energy
4
free-energy functional
4
functional debye-hückel
4
debye-hückel model
4
model fluids
4
fluids nonuniqueness
4

Similar Publications

The transmembrane potential of plasma membranes and membrane-bound organelles plays a fundamental role in cellular functions such as signal transduction, ATP synthesis, and homeostasis. Rhodamine voltage reporters (RhoVRs), which operate based on the photoinduced electron transfer (PeT) mechanism, are non-invasive, small-molecule voltage sensors that can detect rapid voltage changes, with some of them specifically targeting the inner mitochondrial membrane. In this work, we conducted extensive molecular dynamics simulations and free-energy calculations to investigate the physicochemical properties governing the orientation as well as membrane permeation barriers of three RhoVRs.

View Article and Find Full Text PDF

Alzheimer disease is a neurodegenerative pathology-modifying mitochondrial metabolism with energy impairments where the effects of biological sex and DNA repair deficiencies are unclear. We investigated the therapeutic potential of dietary ketosis alone or with supplemental nicotinamide riboside (NR) on hippocampal intermediary metabolism and mitochondrial bioenergetics in older male and female wild-type (Wt) and 3xTgAD-DNA polymerase-β-deficient (3xTg/POLβ) (AD) mice. DNA polymerase-β is a key enzyme in DNA base excision repair (BER) of oxidative damage that may also contribute to mitochondrial DNA repair.

View Article and Find Full Text PDF

Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations.

Acc Chem Res

January 2025

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.

ConspectusPhotochemical reactions have always been the source of a great deal of mystery. While classified as a type of chemical reaction, no doubts are allowed that the general tenets of ground-state chemistry do not directly apply to photochemical reactions. For a typical chemical reaction, understanding the critical points of the ground-state potential (free) energy surface and embedding them in a thermodynamics framework is often enough to infer reaction yields or characteristic time scales.

View Article and Find Full Text PDF

SH2 (Src Homology 2) domains play a crucial role in phosphotyrosine-mediated signaling and have emerged as promising drug targets, particularly in cancer therapy. STAT3 (Signal Transducer and Activator of Transcription 3), which contains an SH2 domain, plays a pivotal role in cancer progression and immune evasion because it facilitates the dimerization of STAT3, which is essential for their activation and subsequent nuclear translocation. SH2 domain-mediated STAT3 inhibition disrupts this binding, reduces phosphorylation of STAT3, and impairs dimerization.

View Article and Find Full Text PDF

Synergistic Atomic Environment Optimization of Nickel-Iron Dual Sites by Co Doping and Cr Vacancy for Electrocatalytic Oxygen Evolution.

J Am Chem Soc

January 2025

School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China.

The dual-site synergistic catalytic mechanism on NiFeOOH suggests weak adsorption of Ni sites and strong adsorption of Fe sites limited its activity toward alkaline oxygen evolution reaction (OER). Large-scale density functional theory (DFT) calculations confirm that Co doping can increase Ni adsorption, while the metal vacancy can reduce Fe adsorption. The combined two factors can further modulate the atomic environment and optimize the free energy toward oxygen-containing intermediates, thus enhancing the OER activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!