AlO, Al doped ZnO and SnO encapsulation of randomly oriented ZnO nanowire networks for high performance and stable electrical devices.

Nanotechnology

Univ. Grenoble Alpes, CNRS, Grenoble INP*, LMGP, F-38000 Grenoble, France. Univ. Grenoble Alpes, CNRS, Grenoble INP*, IMEP-LaHC, F-38000 Grenoble, France.

Published: September 2019

Two-dimensional randomly oriented nanowire (NW) networks, also called nanonets (NNs), have remarkable advantages including low-cost integration, good reproducibility and high sensitivity, which make them a promising material for electronic devices. With this work, we focus on the study of ZnO NNs as channel materials in field effect transistors (FETs). In our process, ZnO NWs were assembled in NNs by the liquid filtration method and were integrated in transistors, with the bottom-gate configuration, using simple technological steps. Non-encapsulated devices exhibited state of the art performances but their stability toward air exposure was poor. Using a proper encapsulation of the nanonets, with cheap, abundant and non-toxic oxides, we demonstrate our ability not only to stabilize their electrical properties, but also to enhance performance to values never reach before for ZnO NW-based transistors. Our best FETs exhibit a low Off-current while maintaining a very good On-current, which results in a I /I ratio exceeding 10 for a drain voltage of 5 V. The behavior of these ZnO NN-based FETs was studied for three different encapsulation materials, alumina (AlO), tin oxide (SnO) and Al-doped ZnO (AZO). These results prove that ZnO NNs are highly promising materials for an easy and low-cost integration into FETs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab2aa5DOI Listing

Publication Analysis

Top Keywords

zno
8
randomly oriented
8
nanowire networks
8
low-cost integration
8
zno nns
8
alo doped
4
doped zno
4
zno sno
4
sno encapsulation
4
encapsulation randomly
4

Similar Publications

Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates.

Nano Converg

January 2025

Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.

The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.

View Article and Find Full Text PDF

The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress.

View Article and Find Full Text PDF

Detection and analysis of organochlorine pesticides (OCP) residue is getting significant research importance because of their extensive use despite their hazardous effects on the health of people and the ecosystem. Despite the implementation of regulations and bans to safeguard human health and the environment, reports frequently reveal the continued use of these harmful chemicals in quantities exceeding the recommended limits set by regulatory boards. Data on the use of OCP from India, the most populous country, and African countries is not very encouraging.

View Article and Find Full Text PDF

The angular dependence of random laser (RL) generation in a commercially available rhodamine 6G (Rh6G) dye has been demonstrated using ZnO-CuO heterostructure as passive scatterers. The grass-like superstructure formed at a 1M:1M molar ratio of ZnO-CuO significantly enhances scattering, resulting in RL spikes with a full width at half maximum (FWHM) of just a few nanometer and a noticeable reduction in the RL threshold. RL emission spectra were collected over an angular spread of 0-180 degrees, revealing a remarkable shift in RL emission from 566 nm to 580 nm.

View Article and Find Full Text PDF

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!