Continuous probabilistic genotyping software enables the interpretation of highly complex DNA profiles that are prone to stochastic effects and/or consist of multiple contributions. The process of introducing probabilistic genotyping into an accredited forensic laboratory requires testing, validation, documentation and training. Documents that include guidelines and/or requirements have been published in order to guide forensic laboratories through this extensive process and there has been encouragements to share the results obtained from internal laboratory studies. To this end, we present the results obtained from the quantitative probabilistic genotyping system EuroForMix applied to mixed DNA profiles with known contributions mixed in known proportions, levels of allele sharing and levels of allelic drop-out. The mixtures were profiled using the PowerPlex® Fusion 6C (PPF6C) kit. Using these mixtures, 427 Hp-true tests and 408 Hd-true tests were performed. In the Hd-true tests, non-contributors were selected deliberately to a have large overlap with the alleles within the mixture and worst-case scenarios were examined in which a simulated relative of one of the true donors was considered as the person of interest under the prosecution hypothesis. The effects of selecting different EuroForMix modelling options, the use of PCR replicates, allelic drop-out, and varying the assigned number of contributors were examined. Instances of Type I and Type II errors are discussed. In addition 330 likelihood ratio results from EuroForMix are compared to the semi-continuous model LRmix Studio. Results demonstrate the performance and trends of EuroForMix when applied to PPF6C profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsigen.2019.06.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!