Pyruvic acid is important organic chemical intermediates that plays a role in cardiomyocyte pathophysiology and therapy. This study sought to explore the inotropic effects of pyruvic acid on the function of the isolated rat hearts and investigate its underlying mechanism. Pyruvic acid produced a greater negative inotropic effect compared to HCl and sodium pyruvate in a concentration-dependent pattern in the hearts. The role of low dose of pyruvic acid on heart function was regulated by pyruvic acid molecules and high dose pyruvic acid may be influenced by pyruvic acid molecules and pH. K channels may be involved in the pyruvic acid-induced negative inotropic effect. Finally, pyruvic acid markedly increased the level of LDH and CK and reduced the level of CaMg-ATPase and NaK-ATPase. These results suggest that pyruvic acid may modulate cardiac function at physiological or low doses but can cause damage to cardiomyocytes at high doses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etap.2019.103206 | DOI Listing |
Sci Adv
December 2024
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Brain metabolism across anatomic regions and cellular compartments plays an integral role in many aspects of neuronal function. Changes in key metabolic pathway fluxes, including oxidative and reductive energy metabolism, have been implicated in a wide range of brain diseases. Given the complex nature of the brain and the need for understanding compartmentalized metabolism noninvasively in vivo, new tools are required.
View Article and Find Full Text PDFACS ES T Water
December 2024
Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.
Wet chemical oxidation (WCO) methods measure total organic carbon (TOC) in aqueous solutions through the formation and detection of carbon dioxide (CO). Prior research documents chloride (Cl) interference during WCO. However, the mechanism that determines WCO interference is not established.
View Article and Find Full Text PDFACS EST Air
December 2024
Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Gas-phase organic acids are ubiquitous in the atmosphere with mixing ratios of several species, such as formic acid and acetic acid, often as high as several parts per billion by volume (ppbv). Organic acids are produced via photochemical reactions and are also directly emitted from various sources, including combustion, microbial activity, vegetation, soils, and ruminants. We present measurements of gas-phase formic, acetic, propionic, pyruvic, and pentanoic acids from a site near Boise, Idaho, in August 2019 made by iodide-adduct chemical ionization mass spectrometry (CIMS).
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
The ultraviolet (UV) photodissociation of pyruvic acid through the absorption of solar actinic flux generates methylhydroxycarbene (MHC) in the atmosphere. It is recognized that isolated MHC can undergo unimolecular isomerization to form acetaldehyde and vinyl alcohol. However, the rates and mechanism for its possible bimolecular reactions with atmospheric constituents, which can occur in parallel with its unimolecular reaction, is not well understood.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA.
Previous studies highlight the potential for sodium-glucose cotransporter type 2 (SGLT2) inhibitors (SGLT2i) to exert cardioprotective effects in heart failure by increasing plasma ketones and shifting myocardial fuel utilization toward ketone oxidation. However, SGLT2i have multiple in vivo effects and the differential impact of SGLT2i treatment and ketone supplementation on cardiac metabolism remains unclear. Here, using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology combined with infusions of [13C6]glucose or [13C4]βOHB, we demonstrate that acute SGLT2 inhibition with dapagliflozin shifts relative rates of myocardial mitochondrial metabolism toward ketone oxidation, decreasing pyruvate oxidation with little effect on fatty acid oxidation in awake rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!