Classical conditioning of the eyeblink reflex (EBC) is a simple form of associative motor learning. EBC is heavily dependent on cerebellar function, but experimental studies also suggest that the prefrontal cortex (PFC) orchestrates a neuronal network which interacts with the cerebellum to mediate the conditioned eyeblink responses (CR). To further investigate the role of PFC for EBC in humans, we aimed in this study at assessing whether acquisition of CR can be modulated by focal repetitive transcranial magnetic stimulation (rTMS) given as theta burst stimulation (TBS) over the dorsolateral PFC (DLPFC). A standard delay conditioning paradigm with a 540 ms tone as conditioned stimulus (CS) coterminating with a 100 ms air puff as unconditioned stimulus (US) was used in a total of 60 healthy subjects (35 female, 25 male, mean age 28.4 ± 2.4 years). One hundred paired CS-US trials and 30 extinction CS alone trials were given. TBS was applied over the DLPFC ipsilaterally to the US during the acquisition phase. Subjects were randomly assigned to three groups (n = 20) using excitatory intermittent TBS (iTBS), inhibitory continuous TBS (cTBS) or sham stimulation. CR acquisition was significantly enhanced by iTBS (mean total CR incidence 63.1 ± 6.5%) and significantly reduced by cTBS (13 ± 2%) compared to sham stimulation (25.1 ± 6.7%). We provide thus physiological evidence that the acquisition of this type of associative learning is critically modulated by PFC activity in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2019.112027 | DOI Listing |
Elife
January 2025
Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
Cognitive flexibility requires both the encoding of task-relevant and the ignoring of task-irrelevant stimuli. While the neural coding of task-relevant stimuli is increasingly well understood, the mechanisms for ignoring task-irrelevant stimuli remain poorly understood. Here, we study how task performance and biological constraints jointly determine the coding of relevant and irrelevant stimuli in neural circuits.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706.
Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition.
View Article and Find Full Text PDFEur J Pain
February 2025
Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil.
Background And Objective: Non-invasive neuromodulation techniques (NIN), such as transcranial Direct Current Stimulation (tDCS) and repetitive Transcranial Magnetic Stimulation (rTMS), have been extensively researched for their potential to alleviate pain by reversing neuroplastic changes associated with neuropathic pain (NP), a prevalent and complex condition. However, treating NP remains challenging due to the numerous variables involved, such as different techniques, dosages and aetiologies. It is necessary to provide insights for clinicians and public healthcare managers to support clinical decision-making.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
Introduction: Stress-evoked dysfunctions of the frontal cortex (FC) are correlated with changes in the functioning of the glutamatergic system, and evidence demonstrates that noradrenergic transmission is an important regulator of this process. In the current study, we adopted a restraint stress (RS) model in male Wistar rats to investigate whether the blockade of β1 adrenergic receptors (β1AR) with betaxolol (BET) in stressed animals influences the body's stress response and the expression of selected signaling proteins in the medial prefrontal cortex (mPFC).
Methods: The study was divided into two parts.
PeerJ
January 2025
Faculty of Graduate Studies, Daffodil International University, Dhaka, Dhaka, Bangladesh.
Background: Functional magnetic resonance imaging (fMRI) has revolutionized our understanding of brain activity by non-invasively detecting changes in blood oxygen levels. This review explores how fMRI is used to study mind-reading processes in adults.
Methodology: A systematic search was conducted across Web of Science, PubMed, and Google Scholar.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!