Cockroach neurosecretory cells, dorsal unpaired median (DUM) neurons, express two distinct α-bungarotoxin-insensitive nicotinic acetylcholine receptor subtypes, nAChR1 and nAChR2 which are differently sensitive to the neonicotinoid insecticides and intracellular calcium pathways. The aim of this study is to determine whether sulfoxaflor acts as an agonist of nAChR1 and nAChR2 subtypes. We demonstrated that 1 mM sulfoxaflor induced high current amplitudes, compared to acetylcholine, suggesting that it was a full agonist of DUM neuron nAChR subtypes. Sulfoxaflor evoked currents were not inhibited by the nicotinic acetylcholine receptor antagonist d-tubocurarine (dTC) which reduced nAChR1. But, sulfoxaflor evoked currents were reduced in the presence of 5 μM mecamylamine which is known to reduce nAChR2 subtype. Interestingly, when 1 μM imidacloprid was added in the extracellular solution, sulfoxaflor-induced currents were significantly suppressed. Moreover, when extracellular calcium concentration was increased, bath application of 1 μM imidacloprid partially reduced sulfoxaflor activated currents when nAChR1 was inhibited with 20 μM dTC and completely suppressed sulfoxaflor currents when nAChR2 was inhibited with 5 μM mecamylamine. Our data demonstrated therefore that sulfoxaflor activates both nAChR1 and nAChR2 subtypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2019.06.003 | DOI Listing |
J Insect Physiol
June 2022
Université d'Orléans, LBLGC USC-INRAE 1328, 1 rue de Chartres, Orléans 45067, France. Electronic address:
Dorsal unpaired median (DUM) neurons, are a class of insect neurosecretory cells, which are involved in the control of several functions, such as excretion and reproduction, or the release of neurohormones. Previous studies demonstrated that they express different nicotinic acetylcholine receptor subtypes, in particular α-bungarotoxin-insensitive receptors, with nAChR1 and nAChR2 subtypes. Here, we demonstrated that pulse application of 1 mM nicotine (300 ms pulse duration) induced inward currents which were reduced under bath application of 15 µM calmidazolium, a calmodulin inhibitor.
View Article and Find Full Text PDFPLoS Pathog
July 2020
Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Sea Lice Research Centre, Oslo, Norway.
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels mostly located in the post-synaptic membrane of cholinergic synapses. The natural neurotransmitter is acetylcholine, but they are also the direct targets for neonicotinoids, chemicals widely used against ectoparasites, arthropod vectors and agricultural pests. There are significant concerns regarding adverse effects of neonicotinoids on beneficial insects.
View Article and Find Full Text PDFNeurotoxicology
May 2020
Université d'Orléans, LBLGC USC INRA 1328, 1 rue de Chartres, 45067 Orléans, France. Electronic address:
We previously demonstrated that the cockroach α-bungarotoxin-sensitive nicotinic acetylcholine receptors, nAChR1 and nAChR2 subtypes, are differently sensitive to intracellular calcium pathways. Here, using whole cell patch-clamp recordings, we studied the effects of the diacylglycerol (DAG) analogue 1,2-dioctanoyl-sn-glycerol (DiC8) on nicotine- and clothianidin-evoked currents under an α-bungarotoxin treatment. Our results demonstrated that DiC8 reduced nicotine and clothianidin evoked currents.
View Article and Find Full Text PDFNeurotoxicology
September 2019
LBLGC USC INRA 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France. Electronic address:
Cockroach neurosecretory cells, dorsal unpaired median (DUM) neurons, express two distinct α-bungarotoxin-insensitive nicotinic acetylcholine receptor subtypes, nAChR1 and nAChR2 which are differently sensitive to the neonicotinoid insecticides and intracellular calcium pathways. The aim of this study is to determine whether sulfoxaflor acts as an agonist of nAChR1 and nAChR2 subtypes. We demonstrated that 1 mM sulfoxaflor induced high current amplitudes, compared to acetylcholine, suggesting that it was a full agonist of DUM neuron nAChR subtypes.
View Article and Find Full Text PDFNeurotoxicology
September 2017
Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, Université Bretagne Loire, Univ. Angers, UFR Sciences, Angers Cedex, France. Electronic address:
Neonicotinoids are the most important class of insecticides used in agriculture over the last decade. They act as selective agonists of insect nicotinic acetylcholine receptors (nAChRs). The emergence of insect resistance to these insecticides is one of the major problems, which limit the use of neonicotinoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!