Landscape topography and the mobility of individuals will have fundamental impacts on a species' population structure, for example by enhancing or reducing gene flow and therefore influencing the effective size and genetic diversity of the population. However, social organization will also influence population genetic structure. For example, species that live and breed in cooperative groups may experience high levels of inbreeding and strong genetic drift. The western pebble-mound mouse (Pseudomys chapmani), which occupies a highly heterogeneous, semi-arid landscape in Australia, is an enigmatic social mammal that has the intriguing behaviour of working cooperatively in groups to build permanent pebble mounds above a subterranean burrow system. Here, we used both nuclear (microsatellite) and mitochondrial (mtDNA) markers to analyse the range-wide population structure of western pebble-mound mice sourced from multiple social groups. We observed high levels of genetic diversity at the broad scale, very weak genetic differentiation at a finer scale and low levels of inbreeding. Our genetic analyses suggest that the western pebble-mound mouse population is both panmictic and highly viable. We conclude that high genetic connectivity across the complex landscape is a consequence of the species' ability to permeate their environment, which may be enhanced by "boom-bust" population dynamics driven by the semi-arid climate. More broadly, our results highlight the importance of sampling strategies to infer social structure and demonstrate that sociality is an important component of population genetic structure.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeb.13498DOI Listing

Publication Analysis

Top Keywords

genetic structure
12
western pebble-mound
12
population structure
8
structure example
8
genetic
8
genetic diversity
8
population genetic
8
high levels
8
levels inbreeding
8
pebble-mound mouse
8

Similar Publications

Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.

View Article and Find Full Text PDF

Gone with the Species: From Gene Loss to Gene Extinction.

Front Biosci (Schol Ed)

December 2024

Department of Biological Sciences, Virtual University of Pakistan, 55150 Lahore, Punjab, Pakistan.

Background: Vertebrae protein-coding genes exhibit remarkable diversity and are organized into many gene families. These gene families have emerged through various gene duplication events, the most prominent being the two rounds of whole-genome duplication (WGD). The current research project analyzed a unique class of genes called "singletons".

View Article and Find Full Text PDF

Background: The Japanese quail () is a small migratory bird whose main habitats are located in East Asia, Russia, China, Japan, Korea, and India. The Japanese quail was first introduced into the Iraqi research sector in the early 1980s. This investigation aimed to identify the genetic divergence between the available genetic lines of the Japanese quail in Iraq as a first step to conducting further conservation and breeding, benefiting from studying the genetic diversity related to productivity, adaptation, and immune susceptibility.

View Article and Find Full Text PDF

Background: Mucopolysaccharidosis (MPS) is a class of hereditary metabolic diseases that demonstrate itself by accumulating incompletely degraded glycosaminoglycans (GAGs). MPS are classified according to the kind(s) of stored GAG(s) and specific genetic/enzymatic defects. Despite the accumulation of the same type of GAG, two MPS diseases, Sanfilippo (MPS III) and Morquio (MPS IV), are further distinguished into subclasses based on different enzymes that are deficient.

View Article and Find Full Text PDF

Gene Fusion Detection in Long-Read Transcriptome Datasets from Multiple Cancer Cell Lines.

Front Biosci (Landmark Ed)

December 2024

Graduate School of Information Science and Technology, Osaka University, 565-0871 Suita, Osaka, Japan.

Background: Fusion genes are important biomarkers in cancer research because their expression can produce abnormal proteins with oncogenic properties. Long-read RNA sequencing (long-read RNA-seq), which can sequence full-length mRNA transcripts, facilitates the detection of such fusion genes. Several tools have been proposed for detecting fusion genes in long-read RNA-seq datasets derived from cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!