The abnormal accumulation of β-amyloid peptide (Aβ) is recognized as a central component in the pathogenesis of Alzheimer disease. While many aspects of Aβ-mediated neurotoxicity remain elusive, Aβ has been associated with numerous underlying pathologies, including oxidative and nitrosative stress, inflammation, metal ion imbalance, mitochondrial dysfunction, and even tau pathology. Ergothioneine (ET), a naturally occurring thiol/thione-derivative of histidine, has demonstrated antioxidant and neuroprotective properties against various oxidative and neurotoxic stressors. This study investigates ET's potential to counteract Aβ-toxicity in transgenic Caenorhabditis elegans overexpressing a human Aβ peptide. The accumulation of Aβ in this model leads to paralysis and premature death. We show that ET dose-dependently reduces Aβ-oligomerization and extends the lifespan and healthspan of the nematodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.13497 | DOI Listing |
ACS Chem Neurosci
December 2024
Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy.
The intricate relationship between brain vascular diseases and neurodegeneration has garnered increased attention in the scientific community. With an aging population, the incidence of these two conditions is likely to increase, making it imperative to understand the underlying common molecular mechanisms and unveiling novel avenues for therapy. Prompted by the observation that Aβ peptide aggregation has been implicated in the development of cerebral amyloid angiopathy (CAA) and that elevated concentrations of vascular endothelial growth factor (VEGF) in the cerebrospinal fluid (CSF) have been correlated with less cognitive decline in Alzheimer's disease (AD), we demonstrate that a small peptide (Pep9) encompassing the 10-30 sequence of VEGF exhibits significant ability to inhibit the aggregation of the Aβ1-42 peptide, as well as the formation of toxic oligomers.
View Article and Find Full Text PDFHistochem Cell Biol
November 2024
Department of Biomedical Sciences, Chosun University, Gwangju, 61452, Republic of Korea.
Background: Alzheimer's Disease (AD) is the leading cause of dementia globally, affecting around 50 million people and marked by cognitive decline and the accumulation of β-amyloid plaques and hyperphosphorylated tau. The limited treatment options and numerous failed clinical trials targeting β-amyloid (Aβ) highlight the need for novel approaches. Lowered proteasome activity is a consistent feature in AD, particularly in the hippocampus.
View Article and Find Full Text PDFFoods
August 2024
Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain.
Black mulberry ( L.) is a common edible fruit from the Moraceae family with a wide variety of nutritional and medicinal applications, mainly due to its antioxidant and anti-inflammatory properties. The purpose of this work was to investigate the cytoprotective and neuroprotective capacity of a hydrophilic black mulberry solvent-free extract rich in polyphenols, including the antioxidant, antiradical, and enzymatic mechanisms that would explain these effects.
View Article and Find Full Text PDFDiseases
August 2024
Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by beta-amyloid (Aβ) deposition and increased acetylcholinesterase (AchE) enzyme activities. Indole 3 carbinol (I3C) and diindolylmethane (DIM) are reported to have neuroprotective activities against various neurological diseases, including ischemic stroke, Parkinson's disease, neonatal asphyxia, depression, stress, neuroinflammation, and excitotoxicity, except for AD. In the present study, we have investigated the anti-AD effects of I3C and DIM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!