The abnormal accumulation of β-amyloid peptide (Aβ) is recognized as a central component in the pathogenesis of Alzheimer disease. While many aspects of Aβ-mediated neurotoxicity remain elusive, Aβ has been associated with numerous underlying pathologies, including oxidative and nitrosative stress, inflammation, metal ion imbalance, mitochondrial dysfunction, and even tau pathology. Ergothioneine (ET), a naturally occurring thiol/thione-derivative of histidine, has demonstrated antioxidant and neuroprotective properties against various oxidative and neurotoxic stressors. This study investigates ET's potential to counteract Aβ-toxicity in transgenic Caenorhabditis elegans overexpressing a human Aβ peptide. The accumulation of Aβ in this model leads to paralysis and premature death. We show that ET dose-dependently reduces Aβ-oligomerization and extends the lifespan and healthspan of the nematodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.13497DOI Listing

Publication Analysis

Top Keywords

inhibition amyloid-induced
4
amyloid-induced toxicity
4
toxicity ergothioneine
4
ergothioneine transgenic
4
transgenic caenorhabditis
4
caenorhabditis elegans
4
elegans model
4
model abnormal
4
abnormal accumulation
4
accumulation β-amyloid
4

Similar Publications

The intricate relationship between brain vascular diseases and neurodegeneration has garnered increased attention in the scientific community. With an aging population, the incidence of these two conditions is likely to increase, making it imperative to understand the underlying common molecular mechanisms and unveiling novel avenues for therapy. Prompted by the observation that Aβ peptide aggregation has been implicated in the development of cerebral amyloid angiopathy (CAA) and that elevated concentrations of vascular endothelial growth factor (VEGF) in the cerebrospinal fluid (CSF) have been correlated with less cognitive decline in Alzheimer's disease (AD), we demonstrate that a small peptide (Pep9) encompassing the 10-30 sequence of VEGF exhibits significant ability to inhibit the aggregation of the Aβ1-42 peptide, as well as the formation of toxic oligomers.

View Article and Find Full Text PDF

Novel role of curcumin as inhibitor of β-amyloid-induced lamin fragmentation.

Histochem Cell Biol

November 2024

Department of Biomedical Sciences, Chosun University, Gwangju, 61452, Republic of Korea.

Article Synopsis
  • - Oligomer amyloid beta 42 (Aβ) is a major contributor to Alzheimer's disease, causing harmful effects on cell structures called lamins; curcumin shows potential in protecting against this damage.
  • - The study conducted on human neuroblastoma cells revealed that curcumin significantly decreased Aβ aggregation and its harmful uptake into cells, ultimately preventing cell death.
  • - Curcumin also reduced the rise in intracellular calcium and inhibited related enzyme activity, providing a new perspective on how it may offer protection in Alzheimer's treatment strategies.
View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is the leading cause of dementia globally, affecting around 50 million people and marked by cognitive decline and the accumulation of β-amyloid plaques and hyperphosphorylated tau. The limited treatment options and numerous failed clinical trials targeting β-amyloid (Aβ) highlight the need for novel approaches. Lowered proteasome activity is a consistent feature in AD, particularly in the hippocampus.

View Article and Find Full Text PDF

Black mulberry ( L.) is a common edible fruit from the Moraceae family with a wide variety of nutritional and medicinal applications, mainly due to its antioxidant and anti-inflammatory properties. The purpose of this work was to investigate the cytoprotective and neuroprotective capacity of a hydrophilic black mulberry solvent-free extract rich in polyphenols, including the antioxidant, antiradical, and enzymatic mechanisms that would explain these effects.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease characterized by beta-amyloid (Aβ) deposition and increased acetylcholinesterase (AchE) enzyme activities. Indole 3 carbinol (I3C) and diindolylmethane (DIM) are reported to have neuroprotective activities against various neurological diseases, including ischemic stroke, Parkinson's disease, neonatal asphyxia, depression, stress, neuroinflammation, and excitotoxicity, except for AD. In the present study, we have investigated the anti-AD effects of I3C and DIM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!