Background: Thoracic aortic dissection is an emergent life-threatening condition. Routine screening for genetic variants causing thoracic aortic dissection is not currently performed for patients or family members.

Methods: We performed whole exome sequencing of 240 patients with thoracic aortic dissection (n=235) or rupture (n=5) and 258 controls matched for age, sex, and ancestry. Blinded to case-control status, we annotated variants in 11 genes for pathogenicity.

Results: Twenty-four pathogenic variants in 6 genes (COL3A1, FBN1, LOX, PRKG1, SMAD3, and TGFBR2) were identified in 26 individuals, representing 10.8% of aortic cases and 0% of controls. Among dissection cases, we compared those with pathogenic variants to those without and found that pathogenic variant carriers had significantly earlier onset of dissection (41 versus 57 years), higher rates of root aneurysm (54% versus 30%), less hypertension (15% versus 57%), lower rates of smoking (19% versus 45%), and greater incidence of aortic disease in family members. Multivariable logistic regression showed that pathogenic variant carrier status was significantly associated with age <50 (odds ratio [OR], 5.5; 95% CI, 1.6-19.7), no history of hypertension (OR, 5.6; 95% CI, 1.4-22.3), and family history of aortic disease (mother: OR, 5.7; 95% CI, 1.4-22.3, siblings: OR, 5.1; 95% CI, 1.1-23.9, children: OR, 6.0; 95% CI, 1.4-26.7).

Conclusions: Clinical genetic testing of known hereditary thoracic aortic dissection genes should be considered in patients with a thoracic aortic dissection, followed by cascade screening of family members, especially in patients with age-of-onset <50 years, family history of thoracic aortic disease, and no history of hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582991PMC
http://dx.doi.org/10.1161/CIRCGEN.118.002476DOI Listing

Publication Analysis

Top Keywords

thoracic aortic
16
aortic dissection
16
pathogenic variants
12
variants genes
8
pathogenic variant
8
aortic
6
dissection
6
pathogenic
5
variants
5
clinical implications
4

Similar Publications

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice.

J Clin Invest

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.

View Article and Find Full Text PDF

Background And Objective: Patients with thoracic aortic aneurysm and dissection (TAAD) are often asymptomatic but present acutely with life threatening complications that necessitate emergency intervention. Aortic diameter measurement using computed tomography (CT) is considered the gold standard for diagnosis, surgical planning, and monitoring. However, manual measurement can create challenges in clinical workflows due to its time-consuming, labour-intensive nature and susceptibility to human error.

View Article and Find Full Text PDF

Background: Valvular heart disease (VHD) management has evolved rapidly in recent decades, but disparities in health care access persist among countries with varying socioeconomic backgrounds.

Objectives: The purpose of this study was to investigate global mortality trends from VHD and assess the difference between middle- and high-income countries.

Methods: We obtained mortality data from the World Health Organization Mortality Database for VHD and its subgroups (rheumatic valvular disease [RVD], infective endocarditis [IE], aortic stenosis [AS], and mitral regurgitation [MR]) from 2000 to 2019.

View Article and Find Full Text PDF

Development and Validation of a Diagnostic Model for Stanford Type B Aortic Dissection Based on Proteomic Profiling.

J Inflamm Res

January 2025

Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China.

Purpose: Stanford Type B Aortic Dissection (TBAD), a critical aortic disease, has exhibited stable mortality rates over the past decade. However, diagnostic approaches for TBAD during routine health check-ups are currently lacking. This study focused on developing a model to improve the diagnosis in a population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!