is the causative agent of Chagas disease, a parasitic infection endemic in Latin America. Currently there are no effective treatments for the chronic phase of the disease, when most patients are diagnosed, therefore the development of new drugs is a priority area. Several triazoles, used as fungicides, exhibit trypanocidal activity both and . The mechanism of action of such drugs, both in fungi and in , relies in the inhibition of ergosterol biosynthesis affecting the cell viability and growth. Among them, terconazole was the first triazole antifungal drug for human use. In this work, the trypanocidal activity of terconazole was evaluated using assays. In epimastigotes of two parasites strains from different discrete typing units (Y and Dm28c) the calculated IC were 25.7 μM and 21.9 μM, respectively. In trypomastigotes and amastigotes (the clinically relevant life-stages of ) a higher drug susceptibility was observed with IC values of 4.6 μM and 5.9 μM, respectively. Finally, the molecular docking simulations suggest that terconazole inhibits the cytochrome P450 14-α-demethylase, interacting in a similar way that other triazole drugs. Drug repurposing to Chagas disease treatment is one of the recommended approach according to the criterion of international health organizations for their application in neglected diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562323 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e01947 | DOI Listing |
ACS Med Chem Lett
January 2025
Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven 3000, Belgium.
Cruzipain (CZP) is an essential cysteine protease of , the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of , a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC = 28 nM) and null inhibition of human cathepsin L.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Aurora, CO, USA.
Background: Endemic in more than 20 countries, Chagas disease affects 6.3 million people worldwide, leading to 28,000 new infections and 7700 deaths each year. Previous meta-analyses on antiparasitic treatment need updates to encompass recent studies and to assess key clinically meaningful endpoints.
View Article and Find Full Text PDFBMC Nurs
January 2025
Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil.
Background: Nurses provide essential care for symptomatic chronic Chagas disease carriers, caused by Trypanosoma cruzi, offering crucial support, symptom management, medication administration, and monitoring to enhance their health-related quality of life.
Objective: To increase healthcare professionals' awareness of the critical role played by high-quality care in the management of patients with chronic Chagas disease.
Methods: This scoping review employed the PRISMA-ScR method as a framework for article selection.
Ecohealth
January 2025
Laboratorio de Medicina y Endocrinología de la Fauna Silvestre, IMBECU, UNCuyo - CONICET, Av. Dr. Adrian Ruiz Leal s/n, Parque General San Martín, Mendoza, Argentina.
Urban domestic dog populations can provide important clues about the eco-epidemiological characteristics of Trypanosoma cruzi, the causative agent of Chagas disease (ChD). Given the limited data on ChD from the Metropolitan Area of Mendoza, Argentina, a seroprevalence survey of 327 dogs across an urban-rural gradient was conducted between April 2018 and May 2019. Seropositive cases were analyzed considering host, social, and environmental factors, subtypes (DTUs), and bloodstream parasite load.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte 59078-900, Natal, Brazil.
Background: Determining esophageal and colon involvement in patients with Chagas disease occurs through invasive and uncomfortable examinations, which in most cases are not performed. The objective of this study was to assess the involvement of anti-M2-pyruvate kinase (M2-PK) autoantibodies in the development of digestive alterations and/or in the diagnosis of the digestive form of human Chagas disease.
Methods: The total IgG and isotype (IgG1, IgG2, IgG3, IgG4) production was quantified using the antigen of Trypanosoma cruzi and the human M2-PK recombinant protein via the ELISA technique.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!