Pannexin-1 channels bridge apoptosis to NLRP3 inflammasome activation.

Mol Cell Oncol

Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.

Published: May 2019

Apoptosis can promote inflammation by triggering activation of the NLRP3 inflammasome (NLR family, pyrin domain containing 3). However, the molecular mechanisms regulating these processes are ill-defined. We recently reported that pannexin-1 is required to promote NLRP3 inflammasome assembly. We further demonstrate that differential cleavage of gasdermin D (GSDMD) by apoptotic caspases regulates inflammatory cell lysis. Here, we discuss our findings and perspectives for future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548479PMC
http://dx.doi.org/10.1080/23723556.2019.1610324DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
12
pannexin-1 channels
4
channels bridge
4
bridge apoptosis
4
apoptosis nlrp3
4
inflammasome activation
4
activation apoptosis
4
apoptosis promote
4
promote inflammation
4
inflammation triggering
4

Similar Publications

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Purpose: BMS-986299 is a first-in-class, NOD-, LRR-, and pyrin-domain containing-3 (NLRP3) inflammasome agonist enhancing adaptive immune and T-cell memory responses.

Materials And Methods: This was a phase-I (NCT03444753) study that assessed the safety and tolerability of intra-tumoral BMS-986299 monotherapy (part 1A) and in combination (part 1B) with nivolumab, and ipilimumab in advanced solid tumors. Reported here are single-center results.

View Article and Find Full Text PDF

Scutellarin inhibits pyroptosis via selective autophagy degradation of p30/GSDMD and suppression of ASC oligomerization.

Pharmacol Res

January 2025

MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in Erigeron breviscapus, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes.

View Article and Find Full Text PDF

Glaesserella parasuis serotype 5 promotes pyroptosis via degrading Caveolin-1 in 3D4/21 cells.

Vet Microbiol

January 2025

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China. Electronic address:

Glaesserella parasuis (G. parasuis) is an important pathogen, which can cause systemic inflammatory response in pigs and bring huge economic losses to the global swine industry. G.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!