A Noninvasive 3D Body Scanner and Software Tool towards Analysis of Scoliosis.

Biomed Res Int

Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Orthopaedic Department, Research Unit of the Buhl-Strohmaier Foundation for Cerebral Palsy and Paediatric Neuroorthopaedics, Munich, Germany.

Published: December 2019

Purpose: Children with neurological disorders, such as cerebral palsy (CP), have a high risk of developing scoliosis during growth. The fast progression of scoliosis implies in several cases frequent clinical and X-ray examinations. We present an ionizing radiation-free, noncontacting method to estimate the trajectory of the vertebral column and to potentially facilitate medical diagnosis in cases where an X-ray examination is not indicated.

Methods: A body scanner and corresponding analysis software tools have been developed to get 3D surface scans of patient torsos and to analyze their spinal curvatures. The trajectory of the vertebral column has been deduced from the body contours at different transverse sectional planes along the vertical torso axis. In order to verify the present methods, we have analyzed twenty-five torso contours, extracted from computer tomography (CT) images of patients who had a CT scan for other medical reasons, but incidentally also showed a scoliosis. The software tools therefore process data from the body scanner as well as X-ray or CT images.

Results: The methods presented show good results in the estimations of the lateral deviation of the spine for mild and moderate scoliosis. The partial mismatch for severe cases is associated with a less accurate estimation of the rotation of the vertebrae around the vertical body axis in these cases. In addition, distinct torso contour shapes, in the transverse sections, have been characterized according to the severity of the scoliosis.

Conclusion: The hardware and software tools are a first step towards an ionizing radiation-free analysis of progression of scoliosis. However, further improvements of the analysis methods and tests on a larger number of data sets with diverse types of scoliosis are necessary, before its introduction into clinical application as a supplementary tool to conventional examinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532313PMC
http://dx.doi.org/10.1155/2019/4715720DOI Listing

Publication Analysis

Top Keywords

body scanner
12
software tools
12
progression scoliosis
8
ionizing radiation-free
8
trajectory vertebral
8
vertebral column
8
scoliosis
7
noninvasive body
4
software
4
scanner software
4

Similar Publications

Evaluation of a Deep Learning Denoising Algorithm for Dose Reduction in Whole-Body Photon-Counting CT Imaging: A Cadaveric Study.

Acad Radiol

January 2025

Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany (R.D., J.M.B., B.S., J.M., S.G., P.K., S.W., J.H., K.N., S.A., A.B.).

Rationale And Objectives: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at lower doses. This study aims to evaluate the effectiveness of a deep learning (DL)-based denoising algorithm in maintaining diagnostic image quality in whole-body PCCT imaging at reduced radiation levels, using real intraindividual cadaveric scans.

Materials And Methods: Twenty-four cadaveric human bodies underwent whole-body CT scans on a PCCT scanner (NAEOTOM Alpha, Siemens Healthineers) at four different dose levels (100%, 50%, 25%, and 10% mAs).

View Article and Find Full Text PDF

Relationships of eating behaviors with psychopathology, brain maturation and genetic risk for obesity in an adolescent cohort study.

Nat Ment Health

January 2025

Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Unhealthy eating, a risk factor for eating disorders (EDs) and obesity, often coexists with emotional and behavioral problems; however, the underlying neurobiological mechanisms are poorly understood. Analyzing data from the longitudinal IMAGEN adolescent cohort, we investigated associations between eating behaviors, genetic predispositions for high body mass index (BMI) using polygenic scores (PGSs), and trajectories (ages 14-23 years) of ED-related psychopathology and brain maturation. Clustering analyses at age 23 years ( = 996) identified 3 eating groups: restrictive, emotional/uncontrolled and healthy eaters.

View Article and Find Full Text PDF

Usefulness of Myelin Quantification Using Synthetic Magnetic Resonance Imaging for Predicting Outcomes in Patients With Acute Ischemic Stroke.

Stroke

January 2025

Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (M.T., T.N., S.A., H.M.).

Background: Synthetic magnetic resonance imaging (MRI) is an innovative MRI technology that enables the acquisition of multiple quantitative values, including T1 and T2 values, proton density, and myelin volume, in a single scan. Although the usefulness of myelin measurement with synthetic MRI has been reported for assessing several diseases, investigations in patients with stroke have not been reported. We aimed to explore the utility of myelin quantification using synthetic MRI in predicting outcomes in patients with acute ischemic stroke.

View Article and Find Full Text PDF

Background: Three-dimensional rotational angiography (3DRA) is a promising advancement to guide cardiac catheterizations. It is used with restraint in critically ill infants with congenital heart disease (CHD) due to the lack of research conducted within this patient group.

Methods: Data of all infants with CHD and a body weight <5 kg who underwent cardiac catheterization with the use of 3DRA between November 2011 and April 2021 were retrospectively analyzed.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80 %)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!