Bedaquiline (BDQ) is a recently approved antibiotic for the treatment of multidrug-resistant tuberculosis, but its potential against slow-growing mycobacteria (SGM) is still unknown. The objective of this study was to determine the in vitro activity of BDQ on SGM by assessing their MIC and minimal bactericidal concentration (MBC). The MIC of BDQ against 17 clinical isolates including Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium chimaera, Mycobacterium kansasii and Mycobacterium simiae species was determined by the resazurin microtitre assay and the MBC by the c.f.u. determination on 7H10 agar plates. BDQ has a bacteriostatic activity on all SGM tested with a MIC range from 0.03 to 0.007 µg ml and surprisingly a good bactericidal activity on the majority of the isolates tested with an MBC of 1-2 µg ml . Based on these preliminary results BDQ seems to be very promising for treatment of diseases caused by SGM.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.001025DOI Listing

Publication Analysis

Top Keywords

vitro activity
8
bdq
5
mycobacterium
5
activity bedaquiline
4
bedaquiline slow-growing
4
slow-growing nontuberculous
4
nontuberculous mycobacteria
4
mycobacteria bedaquiline
4
bedaquiline bdq
4
bdq approved
4

Similar Publications

Abdominal PP meshes coated with functional core-sheath biodegradable nanofibers with anticoagulant and antibacterial properties.

Biomater Adv

January 2025

Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France. Electronic address:

Abdominal hernia repair is a common surgical procedure, involving in most cases the use of textile meshes providing a mechanical barrier to consolidate the damaged surrounding tissues and prevent the resurgence of the hernia. However, in more than half cases postoperative complications such as adhesions and infections occur at the surface of the mesh, leading to chronic pain for the patient and requiring the removal of the implant. One of the most promising strategies to reduce the risk of postoperative adhesions and infections is to add a physical barrier between the mesh and the abdominal walls.

View Article and Find Full Text PDF

Bone regeneration in sheep model induced by strontium-containing mesoporous bioactive glasses.

Biomater Adv

December 2024

Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28040 Madrid, Spain. Electronic address:

Local delivery of therapeutic ions from bioactive mesoporous glasses (MBGs) is postulated as one of the most promising strategies for regenerative therapy of critical bone defects. Among these ions, Sr cation has been widely considered for this purpose as part of the composition of MBGs. MBGs of chemical composition 75SiO-25-x CaO-5PO-xSrO with x = 0, 2.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) was used to modify a natural polymer, sesbania gum (SG), to prepare oxidized sesbania gum (OSG) with the aim of investigating the physicochemical properties, antimicrobial activity of polyethylene oxide (PEO), OSG, and ε-poly(lysine) (ε-PL) composite fibre membranes and their applications in fresh-cut mango preservation. The PEO/OSG/ε-PL composite fibre membranes were successfully prepared via solution blow spinning (SBS) technology. The results of a series of characterizations revealed that ε-PL was successfully loaded into the fibrous membranes, exhibited good biocompatibility, and ε-PL was better encapsulated, with the membranes.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a specific type of stroke. Dihydroquercetin (DHQ), a flavonoid, is known for its various pharmacological properties. This study aimed to explore the roles and mechanisms of DHQ in influencing the progression of SAH.

View Article and Find Full Text PDF

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!