Background Only sparse literature investigates the reproducibility and repeatability of relaxometry methods in MRI. However, statistical data on reproducibility and repeatability of any quantitative method is essential for clinical application. Purpose To evaluate the reproducibility and repeatability of two-dimensional fast imaging with steady-state free precession MR fingerprinting in vivo in human brains. Materials and Methods Two-dimensional section-selective MR fingerprinting based on a steady-state free precession sequence with an external radiofrequency transmit field, or , correction was used to generate T1 and T2 maps. This prospective study was conducted between July 2017 and January 2018 with 10 scanners from a single manufacturer, including different models, at four different sites. T1 and T2 relaxation times and their variation across scanners (reproducibility) as well as across repetitions on a scanner (repeatability) were analyzed. The relative deviations of T1 and T2 to the average (95% confidence interval) were calculated for several brain compartments. Results Ten healthy volunteers (mean age ± standard deviation, 28.5 years ± 6.9; eight men, two women) participated in this study. Reproducibility and repeatability of T1 and T2 measures in the human brain varied across brain compartments (1.8%-20.9%) and were higher in solid tissues than in the cerebrospinal fluid. T1 measures in solid tissue brain compartments were more stable compared with T2 measures. The half-widths of the confidence intervals for relative deviations were 3.4% for mean T1 and 8.0% for mean T2 values across scanners. Intrascanner repeatability half-widths of the confidence intervals for relative deviations were in the range of 2.0%-3.1% for T1 and 3.1%-7.9% for T2. Conclusion This study provides values on reproducibility and repeatability of T1 and T2 relaxometry measured with fast imaging with steady-state free precession MR fingerprinting in brain tissues of healthy volunteers. Reproducibility and repeatability are considerably higher in solid brain compartments than in cerebrospinal fluid and are higher for T1 than for T2. © RSNA, 2019 See also the editorial by Barkhof and Parker in this issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2019182360 | DOI Listing |
Eur Radiol
January 2025
Department of Information Technology, Uppsala University, 75237, Uppsala, Sweden.
Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.
Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.
Phys Med
January 2025
Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168 Roma, Italy.
Br J Nurs
January 2025
Physiotherapist, AZ Alma Eeklo, Belgium.
In health care, work-related musculoskeletal disorders are largely attributed to patient-handling tasks. Reliable assessments of patient mobility are imperative to mitigate the musculoskeletal burden on healthcare providers. This study explores the reliability of MK5 Mobility Classes, a patient mobility classification system.
View Article and Find Full Text PDFBut so far, few investigators seem interested in having their work repeated.
View Article and Find Full Text PDFPLoS One
January 2025
Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America.
Introduction: Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!