Expression Analysis and Regulation Network Identification of the CONSTANS-Like Gene Family in Moso Bamboo () Under Photoperiod Treatments.

DNA Cell Biol

Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China.

Published: July 2019

AI Article Synopsis

  • The study examines the COL gene family in moso bamboo, a perennial plant with unique flowering and growth patterns, identifying 14 distinct genes and their roles in photoperiodic flowering.
  • Phylogenetic analysis grouped the PheCOLs into three clusters, revealing conserved structures and specific expression patterns mainly in leaves, indicating their involvement in flower development and shoot growth.
  • The research suggests that PheCOL genes exhibit diurnal oscillation, interact with each other, and highlights PheCOL14 as a membrane protein, laying groundwork for understanding moso bamboo's photoperiod regulation.

Article Abstract

()/ () genes that have been studied in annual model plants such as and play key roles in the photoperiodic flowering pathway. Moso bamboo is a perennial plant characterized by a long vegetative stage and flowers synchronously followed by widespread death. However, the characteristics of COL in moso bamboo remain unclear. In view of this, we performed a genome-wide identification and expression analysis of the COL gene family in moso bamboo. Fourteen nonredundant genes were identified, and we analyzed gene structures, phylogeny, and subcellular location predictions. Phylogenetic analyses indicated that 14 PheCOLs could be clustered into three groups, and each clade was well supported by conserved intron/exon structures and motifs. A number of light-related and tissue-specific -elements were randomly distributed within the promoter sequences of the . The expression profiling of genes in various tissues and developmental stages revealed that most of genes were most highly expressed in the leaves and took part in moso bamboo flower development and rapid shoot growth. In addition, the transcription of exhibited a clear diurnal oscillation in both long-day and short-day conditions. Most of the genes were inhibited under light treatment and upregulated in dark conditions. PheCOLs can interact with each other. Subcellular localization result showed that PheCOL14 encoded a cell membrane protein, and it bound to the promoter of . Taken together, the results of this study will be useful not only as they contribute to comprehensive information for further analyses of the molecular functions of the PheCOL gene family, but also will provide a theoretical foundation for the further construction of moso bamboo photoperiod regulation networks.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.2018.4611DOI Listing

Publication Analysis

Top Keywords

moso bamboo
24
gene family
12
expression analysis
8
family moso
8
bamboo photoperiod
8
moso
6
bamboo
6
genes
5
analysis regulation
4
regulation network
4

Similar Publications

Lead (Pb) is a hazardous element that affects the growth and development of plants, while silicon (Si) is a beneficial element for alleviating the stress caused by heavy metals, including Pb. However, the mechanisms of Si reduce Pb accumulation in Moso bamboo remain unclear. In this study, physiological assessments and transcriptome analyses were conducted to investigate the interaction between Si and Pb.

View Article and Find Full Text PDF

Unraveling the intricate tapestry of bamboo transcription factors in abiotic stress signaling and resilience with special reference to moso bamboo family.

Biochim Biophys Acta Gen Subj

December 2024

Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India. Electronic address:

The abiotic stress tolerance mechanism in plants is regulated by multiple physiological, biochemical, and molecular processes; hence, omics approaches to underpin these mechanisms are essential. It is clear that transcription factors (TFs) are one of the fundamental molecular switches that play a crucial role in modulating, regulating, and orchestrating plants in response to various climatic vagaries. Several reports are available now, focusing on understanding the roles of TFs, including those in Poaceae family in regulating different biological processes and stress responses.

View Article and Find Full Text PDF

[This corrects the article DOI: 10.3389/fpls.2023.

View Article and Find Full Text PDF

Forest management impacts on soil phosphorus cycling: Insights from metagenomics in Moso bamboo plantations.

J Environ Manage

December 2024

China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, 310012, China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang, 310012, China.

Bamboo forests are crucial ecosystems and provide essential ecological and economic services in both tropical and subtropical regions. Soil phosphorus (P), a vital nutrient for plant growth, is fundamental to the productivity and health of bamboo forests. However, the microbial mechanisms through which management practices affect soil P processes in bamboo forests remain poorly understood.

View Article and Find Full Text PDF

BZR1 targets steroid 22-alpha hydroxylase 4 to negatively regulates cell elongation in bamboo.

Int J Biol Macromol

December 2024

Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China. Electronic address:

Moso bamboo is renowned for its exceptional growth rate, driven by rapid cell proliferation and elongation in culm internodes. This study uncovers the novel role of brassinosteroids (BRs) in regulating bamboo shoot growth, revealing a previously unknown negative correlation between BR levels and growth rates. Notably, we identify BRASSINAZOLE RESISTANT1 (BZR1) acts as a key transcription factor in BR signaling, governing the expression of genes involved in BR biosynthesis and growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!