Utilization of Proteomic Technologies for Precision Oncology Applications.

Cancer Treat Res

Center for Applied Proteomics and Molecular Medicine, George Mason University, 20110, Manassas, VA, USA.

Published: June 2019

Genomic analysis of tumor specimens has revealed that cancer is fundamentally a proteomic disease at the functional level: driven by genomically defined derangements, but selected for in the proteins that are encoded and the aberrant activation of signaling and biochemical networks. This activation is measured by posttranslational modifications such as phosphorylation and other modifications that modulate cellular signaling, and these events cannot be effectively measured by genomic analysis alone. Moreover, these signaling networks by and large represent the targets for many FDA-approved and experimental molecularly targeted therapeutics. Consequently, it is important that we consider new classification schemas for oncology based not on tumor site of origin or histology under the microscope but on the functional protein signaling architecture. There are numerous proteomic technologies that could be discussed from a purely technological standpoint, but this chapter will concentrate on an overview of the main proteomic technologies available for conducting protein pathway activation analysis of clinical specimens such as multiplex immunoassays, phospho-specific flow cytometry, reverse phase protein microarrays, quantitative immunohistochemistry, and mass spectrometry. This chapter will focus on the application of these technologies to cancer-based clinical studies evaluating prognostic/predictive markers or for stratifying patients to personalized treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-16391-4_6DOI Listing

Publication Analysis

Top Keywords

proteomic technologies
12
genomic analysis
8
chapter will
8
utilization proteomic
4
technologies
4
technologies precision
4
precision oncology
4
oncology applications
4
applications genomic
4
analysis tumor
4

Similar Publications

Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.

Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.

View Article and Find Full Text PDF

Cytochrome P450 2E1 inhibitor Q11 is effective on hepatocellular carcinoma by promoting peritumor neutrophil chemotaxis.

Int J Biol Macromol

December 2024

Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China. Electronic address:

Current studies found that the peritumoral tissue of hepatocellular carcinoma (HCC) may be different from normal liver tissue based on proteomics, and related to progression, recurrence and metastasis of HCC. Our previous study proposed "peritumor microenvironment (PME)" to summarize the influence of peritumor tissue on occurrence and progression of HCC. Peritumor CYP2E1 activity was significantly elevated in HCC, and related to occurrence and progression of HCC.

View Article and Find Full Text PDF

Vimentin is a ubiquitination and degradation substrate of the ubiquitin ligase KPC1.

Biochem Biophys Res Commun

December 2024

The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel. Electronic address:

The ubiquitin proteasome system (UPS), driven by ubiquitin as a degradation signal, eliminates, in a highly specific manner, 'abnormal' proteins and proteins that completed their function. This process involves a hierarchical cascade of E1, E2, and E3 enzymes. The E3 ubiquitin ligases, act as specific receptors that bind their cognate substrates.

View Article and Find Full Text PDF

Background: Adoptive transfer of autologous regulatory T cells (Tregs) is a promising therapeutic strategy aimed at enabling immunosuppression minimization following kidney transplantation. In our phase 1 clinical trial of Treg therapy in living donor renal transplantation, the ONE Study (ClinicalTrials.gov: NCT02129881), we observed focal lymphocytic infiltrates in protocol kidney transplant biopsies that are not regularly seen in biopsies of patients receiving standard immunosuppression.

View Article and Find Full Text PDF

Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis.

EBioMedicine

December 2024

Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain. Electronic address:

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form steatohepatitis (MASH) contribute to rising morbidity and mortality rates. The storage of fat in humans is closely associated with these diseases' progression. Thus, adipose tissue metabolic homeostasis could be key in both the onset and progression of MASH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!