Novel microsatellite markers discovery in Patagonian toothfish (Dissostichus eleginoides) using high-throughput sequencing.

Mol Biol Rep

Laboratory of Molecular Ecology, Genomics, and Evolutionary Studies, Department of Biology, University of Santiago de Chile, Estación Central, Región Metropolitana, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.

Published: October 2019

Patagonian toohfish (Dissostichus eleginoides), is a sub Antartic notothenioid fish key in the marine ecosystem that sustains fishery of higher commercial value in the world. However, there are a scarce knowledge or information about its population genetic background, product of the almost null information of molecular markers available for this species. Here, we use high-throughput sequencing technology (Illumina platform) to develop 1071 microsatellite loci, of which 22 loci were selected to evaluation. Polymorphism and genetic diversity of each locus was assessed in two locations distant by 2370 km. Considering both locations, a mean PIC value of 0.748 was estimated. Selected microsatellite loci showed among two to seventeen alleles by locus in the first location and two to twelve in the second. The observed heterozygosity varied from 0.18 to 0.91 and from 0.12 to 0.87 for the first and second location, respectively. While, the expected heterozygosity ranged from 0.15 to 0.92 and from 0.11 to 0.90. Three loci were monomorphic in only one location. Microsatellite markers developed here will be useful in future studies on conservation, fishery and population genetics of this species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-019-04912-6DOI Listing

Publication Analysis

Top Keywords

microsatellite markers
8
dissostichus eleginoides
8
high-throughput sequencing
8
microsatellite loci
8
novel microsatellite
4
markers discovery
4
discovery patagonian
4
patagonian toothfish
4
toothfish dissostichus
4
eleginoides high-throughput
4

Similar Publications

The Hypericaceae family, comprising nine genera and over seven hundred species, includes plants traditionally used for medicinal purposes. In this study, we performed high-throughput sequencing on three species: , , and , and conducted comparative genomic analyses with related species. The chloroplast genome sizes were 152,654 bp, 122,570 bp, and 137,652 bp, respectively, with an average GC content of 37.

View Article and Find Full Text PDF

(Fragile X messenger ribonucleoprotein 1), located on the X-chromosome, encodes the multi-functional FMR1 protein (FMRP), critical to brain development and function. Trinucleotide CGG repeat expansions at this locus cause a range of neurological disorders, collectively referred to as Fragile X-related conditions. The most well-known of these is Fragile X syndrome, a neurodevelopmental disorder associated with syndromic facial features, autism, intellectual disabilities, and seizures.

View Article and Find Full Text PDF

Background: Türkiye hosts many important fruit species due to its geographical location and ecology. Hawthorn, which is highly beneficial for human health, is one of these significant fruit species. In the present study, 125 accessions of Crataegus azarolus L.

View Article and Find Full Text PDF

Mitochondrial genome structural variants and candidate cytoplasmic male sterility-related gene in sugarcane.

BMC Genomics

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.

Background: Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars.

View Article and Find Full Text PDF

ATRX mutation modifies the DNA damage response in glioblastoma multiforme tumor cells and enhances patient prognosis.

Medicine (Baltimore)

January 2025

Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.

The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!