AI Article Synopsis

  • Crystal structures of neurotensin receptor subtype 1 (NTS1) helped identify how the neurotensin peptide and its active fragment fit into the receptor's binding site.
  • Researchers discovered a unique allosteric binding pocket in NTS1 that differs from NTS2 and explored it using modified peptides, which improved their ability to selectively activate NTS1.
  • The study found that while the binding mode in the main site remains consistent, the newly identified allosteric pocket shows flexibility, allowing it to accommodate different residues from modified peptides.

Article Abstract

Crystal structures of neurotensin receptor subtype 1 (NTS1) allowed us to visualize the binding mode of the endogenous peptide hormone neurotensin and its pharmacologically active C-terminal fragment NT(8-13) within the orthosteric binding pocket of NTS1. Beneath the orthosteric binding pocket, we detected a cavity that exhibits different sequences in the neurotensin receptor subtypes NTS1 and NTS2. In this study, we explored this allosteric binding pocket using bitopic test peptides of type NT(8-13)-Xaa, in which the C-terminal part of NT(8-13) is connected to different amino acids that extend into the newly discovered pocket. Our test compounds showed nanomolar affinities for NTS1, a measurable increase in subtype selectivity compared to the parent peptide NT(8-13), and the capacity to activate the receptor in an IP accumulation assay. Computational investigation of the selected test compounds at NTS1 showed a conserved binding mode within the orthosteric binding pocket, whereas the allosteric cavity was able to adapt to different residues, which suggests a high degree of structural plasticity within that cavity of NTS1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-019-4064-xDOI Listing

Publication Analysis

Top Keywords

binding pocket
20
orthosteric binding
12
allosteric binding
8
pocket nts1
8
neurotensin receptor
8
binding mode
8
test compounds
8
binding
7
nts1
7
pocket
6

Similar Publications

The development of phosphorylation-suppressing inhibitors targeting Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising therapeutic strategy for non-small cell lung cancer (NSCLC). In this study, a generative model was developed using transfer learning and virtual screening, leveraging a comprehensive dataset of STAT3 inhibitors to explore the chemical space for novel candidates. This approach yielded a chemically diverse library of compounds, which were prioritized through molecular docking and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Mirror-image proteins, composed of D-amino acids, are an attractive therapeutic modality, as they exhibit high metabolic stability and lack immunogenicity. Development of mirror-image binding proteins is achieved through chemical synthesis of D-target proteins, phage display library selection of L-binders and chemical synthesis of (mirror-image) D-binders that consequently bind the physiological L-targets. Monobodies are well-established synthetic (L-)binding proteins and their small size (~90 residues) and lack of endogenous cysteine residues make them particularly accessible to chemical synthesis.

View Article and Find Full Text PDF

A 4D tensor-enhanced multi-dimensional convolutional neural network for accurate prediction of protein-ligand binding affinity.

Mol Divers

December 2024

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.

Protein-ligand interactions are the molecular basis of many important cellular activities, such as gene regulation, cell metabolism, and signal transduction. Protein-ligand binding affinity is a crucial metric of the strength of the interaction between the two, and accurate prediction of its binding affinity is essential for discovering drugs' new uses. So far, although many predictive models based on machine learning and deep learning have been reported, most of the models mainly focus on one-dimensional sequence and two-dimensional structural characteristics of proteins and ligands, but fail to deeply explore the detailed interaction information between proteins and ligand atoms in the binding pocket region of three-dimensional space.

View Article and Find Full Text PDF

One-Step Process for the Regiodivergent Double Hydrocyanation of 1,3-Butadiene.

Angew Chem Int Ed Engl

December 2024

Hangzhou Normal University, College of Material, Chemistry and Chemical Engineering, 2318 Yuhangtang Road, 311121, Hangzhou, CHINA.

In industry, the two important nitrile starting materials, adiponitrile and 2-methylglutaronitrile, are primarily manufactured through the well-known DuPont process, which consists of a tandem sequence including first hydrocyanation, isomerization and second hydrocyanation. However, this mature process has the intrinsic defects of step efficiency and regioselectivity. Herein, we report a nickel-catalyzed divergent, one-step double hydrocyanation of 1,3-butadiene to produce either adiponitrile or 2-methylglutaronitrile in high regioselectivity.

View Article and Find Full Text PDF

β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: