Crystal structures of neurotensin receptor subtype 1 (NTS1) allowed us to visualize the binding mode of the endogenous peptide hormone neurotensin and its pharmacologically active C-terminal fragment NT(8-13) within the orthosteric binding pocket of NTS1. Beneath the orthosteric binding pocket, we detected a cavity that exhibits different sequences in the neurotensin receptor subtypes NTS1 and NTS2. In this study, we explored this allosteric binding pocket using bitopic test peptides of type NT(8-13)-Xaa, in which the C-terminal part of NT(8-13) is connected to different amino acids that extend into the newly discovered pocket. Our test compounds showed nanomolar affinities for NTS1, a measurable increase in subtype selectivity compared to the parent peptide NT(8-13), and the capacity to activate the receptor in an IP accumulation assay. Computational investigation of the selected test compounds at NTS1 showed a conserved binding mode within the orthosteric binding pocket, whereas the allosteric cavity was able to adapt to different residues, which suggests a high degree of structural plasticity within that cavity of NTS1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-019-4064-x | DOI Listing |
Mol Divers
December 2024
School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Road, Yinchuan, 750004, Ningxia, China.
The development of phosphorylation-suppressing inhibitors targeting Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising therapeutic strategy for non-small cell lung cancer (NSCLC). In this study, a generative model was developed using transfer learning and virtual screening, leveraging a comprehensive dataset of STAT3 inhibitors to explore the chemical space for novel candidates. This approach yielded a chemically diverse library of compounds, which were prioritized through molecular docking and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Physiological Chemistry, Faculty of Medicine, Philipps University of Marburg, Marburg, Germany.
Mirror-image proteins, composed of D-amino acids, are an attractive therapeutic modality, as they exhibit high metabolic stability and lack immunogenicity. Development of mirror-image binding proteins is achieved through chemical synthesis of D-target proteins, phage display library selection of L-binders and chemical synthesis of (mirror-image) D-binders that consequently bind the physiological L-targets. Monobodies are well-established synthetic (L-)binding proteins and their small size (~90 residues) and lack of endogenous cysteine residues make them particularly accessible to chemical synthesis.
View Article and Find Full Text PDFMol Divers
December 2024
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
Protein-ligand interactions are the molecular basis of many important cellular activities, such as gene regulation, cell metabolism, and signal transduction. Protein-ligand binding affinity is a crucial metric of the strength of the interaction between the two, and accurate prediction of its binding affinity is essential for discovering drugs' new uses. So far, although many predictive models based on machine learning and deep learning have been reported, most of the models mainly focus on one-dimensional sequence and two-dimensional structural characteristics of proteins and ligands, but fail to deeply explore the detailed interaction information between proteins and ligand atoms in the binding pocket region of three-dimensional space.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Hangzhou Normal University, College of Material, Chemistry and Chemical Engineering, 2318 Yuhangtang Road, 311121, Hangzhou, CHINA.
In industry, the two important nitrile starting materials, adiponitrile and 2-methylglutaronitrile, are primarily manufactured through the well-known DuPont process, which consists of a tandem sequence including first hydrocyanation, isomerization and second hydrocyanation. However, this mature process has the intrinsic defects of step efficiency and regioselectivity. Herein, we report a nickel-catalyzed divergent, one-step double hydrocyanation of 1,3-butadiene to produce either adiponitrile or 2-methylglutaronitrile in high regioselectivity.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2025
Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea.
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!