Bermudagrass ( (L.)) is the most important warm-season grass grown for forage or turf. It shows extensive variation in morphological characteristics and growth attributes, but the genetic basis of this variation is little understood. Detection and tagging of quantitative trait loci (QTL) affecting above-ground morphology with diagnostic DNA markers would provide a foundation for genetic and molecular breeding applications in bermudagrass. Here, we report early findings regarding genetic architecture of foliage (canopy height, HT), stolon (stolon internode length, ILEN and length of the longest stolon LLS), and leaf traits (leaf blade length, LLEN and leaf blade width, LW) in 110 F individuals derived from a cross between (T89) and (T574). Separate and joint environment analyses were performed on trait data collected across two to five environments (locations, and/or years, or time), finding significant differences ( < 0.001) among the hybrid progeny for all traits. Analysis of marker-trait associations detected 74 QTL and 135 epistatic interactions. Composite interval mapping (CIM) and mixed-model CIM (MCIM) identified 32 main effect QTL (M-QTL) and 13 interacting QTL (int-QTL). Colocalization of QTL for plant morphology partially explained significant correlations among traits. M-QTL qILEN-3-2 (for ILEN; = 11-19%), qLLS-7-1 (for LLS; = 13-27%), qLEN-1-1 (for LLEN; = 10-11%), and qLW-3-2 (for LW; = 10-12%) were 'stable' across multiple environments, representing candidates for fine mapping and applied breeding applications. QTL correspondence between bermudagrass and divergent grass lineages suggests opportunities to accelerate progress by predictive breeding of bermudagrass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686926PMC
http://dx.doi.org/10.1534/g3.119.400061DOI Listing

Publication Analysis

Top Keywords

breeding applications
8
leaf blade
8
qtl
6
bermudagrass
5
molecular dissection
4
dissection quantitative
4
quantitative variation
4
variation bermudagrass
4
bermudagrass hybrids
4
hybrids morphological
4

Similar Publications

Effect of spermidine on cuproptosis in follicular granulosa cells.

Br Poult Sci

March 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China.

1. A study was conducted to investigate the effect of spermidine on cuproptosis in granulosa cells of goose ovarian follicles. Granulosa cells from F2-F5 grade follicles of Sichuan white geese were isolated and cultured.

View Article and Find Full Text PDF

The Chinese white pear (Pyrus bretschneideri) is an economically significant fruit crop worldwide. Previous versions of the P. bretschneideri genome assembly contain numerous gaps and unanchored genetic regions.

View Article and Find Full Text PDF

Allele mining of crop pangenomes can enable the identification of novel variants for trait improvement, increase crop genetic diversity, and purge deleterious mutations around fixed genomic regions. Sorghum, a C4 cereal crop domesticated in the tropics, was selected for reduced plant height and maturity to develop combine-harvestable and photoperiod-insensitive US grain sorghums. To breed semi-dwarf US grain sorghum hybrids, public and private sector programs mostly used the dw3-ref allele, which produces undesirable height revertants (frequency of 0.

View Article and Find Full Text PDF

Transcriptome analyses reveal key genes related to pod dehiscence of adzuki bean ().

3 Biotech

April 2025

Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China.

Unlabelled: To investigate the mechanism of pod dehiscence in adzuki bean, RNA sequencing was utilized to analyze transcriptomes in the ventral and dorsal sutures of pods from two dehiscence-resistant accessions and two dehiscence-susceptible accessions. A total of 943 differentially expressed genes (DEGs) were identified. Through the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic enrichment pathways, 34 genes related to pod dehiscence were identified.

View Article and Find Full Text PDF

Wheat is cultivated across diverse global environments, and its productivity is significantly impacted by various biotic stresses, most importantly but not limited to rust diseases, Fusarium head blight, wheat blast, and powdery mildew. The genetic diversity of modern cultivars has been eroded by domestication and selection, increasing their vulnerability to biotic stress due to uniformity. The rapid spread of new highly virulent and aggressive pathogen strains has exacerbated this situation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!