Background: Although accumulated evidence provides a strong scientific premise for using immune profiles to predict survival in patients with cancer, a universal immune profile across tumor types is still lacking, and how to achieve a survival-associated immune profile remains to be evaluated.
Methods: We analyzed datasets from The Cancer Genome Atlas to identify an immune profile associated with prolonged overall survival in multiple tumor types and tested the efficacy of tumor cell-surface vimentin-targeted interleukin 12 (ttIL-12) in inducing that immune profile and prolonging survival in both mouse and patient-derived xenograft tumor models.
Results: We identified an immune profile (IFNγCD8FOXP3CD33) associated with prolonged overall survival across several human tumor types. ttIL-12 in combination with surgical resection of the primary tumor transformed tumors to this immune profile. Intriguingly, this immune profile transformation led to inhibition of metastasis and to prolonged survival in both mouse and patient-derived xenograft malignant models. Wild-type IL-12 combined with surgery was significantly less effective. In the IL-12-sensitive C3H mouse strain, in fact, wild-type IL-12 and surgery resulted in shorter overall survival than in mice treated with control pDNA; this surprising result is believed to be attributable to IL-12 toxicity, which was absent in the mice treated with ttIL-12. The ttIL-12-induced immune profile associated with longer overall survival was also associated with a greater accumulation of CD8 T cells and reduced infiltration of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The underlying mechanism for this transformation by ttIL-12 treatment was induction of expression of CXCL9 and reduction of expression of CXCL2 and CCL22 in tumors.
Conclusions: ttIL-12 when combined with surgery led to conversion to the IFNγCD8FOXP3CD33 immune profile, eliminated relapse and metastasis, and prolonged overall survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580640 | PMC |
http://dx.doi.org/10.1186/s40425-019-0631-z | DOI Listing |
Mol Biol Rep
January 2025
Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.
Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.
J Neurol
January 2025
Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
Objectives: The ability to differentiate epileptic- and non-epileptic events is challenging due to a lack of reliable molecular seizure biomarker that provide a retrospective diagnosis. Here, we use next generation sequencing methods on whole blood samples to identify changes in RNA expression following seizures.
Methods: Blood samples were obtained from 32 patients undergoing video electroencephalogram (vEEG) monitoring.
Discov Oncol
January 2025
Department of Oncology, Yanbian University Hospital, Yanji, 133000, China.
Background: Recent studies have highlighted the role of RNA modification, that is, the dysregulation of epitranscriptomics, in tumorigenesis and progression. The potential for undoing epigenetic changes may develop novel therapeutic and prognostic approaches. However, the roles of these RNA modifications in the tumor microenvironment (TME) are still unknown.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Dermatology and Allergy, University Hospital of Munich, Ludwig-Maximilian-University, Munich, Germany.
Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.
View Article and Find Full Text PDFGenes Chromosomes Cancer
January 2025
Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden.
Pleomorphic adenoma (PA) is the most common salivary gland tumor. PAs are characterized by chromosomal rearrangements of 8q12 and 12q14-15, leading to gene fusions involving the PLAG1 and HMGA2 oncogenes. Here, we performed the first comprehensive study of the transcriptomic and gene fusion landscape of 38 cytogenetically characterized PAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!