Design of Rigidity and Breaking Strain for a Kirigami Structure with Non-Uniform Deformed Regions.

Micromachines (Basel)

Department of Applied Mechanics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

Published: June 2019

We modeled a kirigami structure by considering the influence of non-uniform deforming cuts in order to theoretically design the mechanical characteristics of the structure. It is known that the end regions of kirigami structures are non-uniformly deformed when stretched, because the deformation is inhibited at the regions close to both the ends connected to the uncut region in the longitudinal direction. The non-uniform deformation affects the overall mechanical characteristics of the structure. Our model was intended to elucidate how cuts at both ends influence these characteristics. We focused on the difference in the deformation degree caused by a cut between the regions close to the ends and the center of the stretched kirigami device. We proposed a model comprising of connected springs in series with different rigidities in the regions close to the ends and the center. The spring model showed good prediction tendency with regard to the curve of the stress-strain diagram obtained using the tensile test with a test piece. Therefore, the results show that it is possible to theoretically design the mechanical characteristics of a kirigami structure, and that such a design can well predict the influence of cuts, which induce non-uniform deformation at both ends.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631358PMC
http://dx.doi.org/10.3390/mi10060395DOI Listing

Publication Analysis

Top Keywords

kirigami structure
12
mechanical characteristics
12
regions close
12
close ends
12
theoretically design
8
design mechanical
8
characteristics structure
8
non-uniform deformation
8
ends center
8
kirigami
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!